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Abstract Graph pattern mining aims at identifying structures that appear frequently
in large graphs, under the assumption that frequency signifies importance. In real
life, there are many graphs with weights on nodes and/or edges. For these graphs, it
is fair that the importance (score) of a pattern is determined not only by the number
of its appearances, but also by the weights on the nodes/edges of those appearances.
Scoring functions based on the weights do not generally satisfy the apriori property,
which guarantees that the number of appearances of a pattern cannot be larger than
the frequency of any of its sub-patterns, and hence allow faster pruning. Therefore,
existing approaches employ other, less efficient, pruning strategies. The problem be-
comes even more challenging in the case of multiple weighting functions that assign
different weights to the same nodes/edges. In this work we propose a new family
of scoring functions that respects the apriori property, and thus can rely on effective
pruning strategies. We provide efficient and effective techniques for mining patterns
in multi-weight graphs, and we devise both an exact and an approximate solution.
In addition, we propose a distributed version of our approach, which distributes the
appearances of the patterns to examine among multiple workers. Extensive experi-
ments on both real and synthetic datasets prove that the presence of edge weights
and the choice of scoring function affect the patterns mined, and the quality of the

Giulia Preti
University of Trento, Trento, Italy
E-mail: gp@disi.unitn.eu

Matteo Lissandrini
Aalborg University, Denmark
E-mail: matteo@cs.aau.dk

Davide Mottin
Aarhus University, Denmark
E-mail: davide@cs.au.dk

Yannis Velegrakis
University of Trento, Trento, Italy
E-mail: velgias@disi.unitn.eu

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



2 Giulia Preti et al.

results returned to the user. Moreover, we show that, even when the performance of
the exact algorithm degrades because of an increasing number of weighting func-
tions, the approximate algorithm performs well and with fairly good quality. Finally,
the distributed algorithm proves to be the best choice for mining large and rich input
graphs.1

Keywords Multi-weighted Graphs · Graph Mining · Weighted Pattern Mining ·
Personalized Patterns

1 Introduction

Pattern mining in large graphs has attracted considerable attention, since it finds ap-
plications in many real world scenarios like fraud detection [35], biological structures
identification [18], anticipation of user intention [37], graph similarity search [22],
traffic control [23], and query optimization [49]. It has been studied for graph collec-
tions [48], for attributed [40], probabilistic [28], or even generic large graphs [12].
The goal is to identify patterns that occur frequently, given that frequency indicates
importance. An interesting property regarding frequency is that a pattern cannot be
more frequent that any of its sub-patterns, known as the apriori property. This prop-
erty enables efficient implementations [50], as it ensures that the frequency of a pat-
tern decreases monotonically as the pattern grows in size, thus allowing the mining
process to start from small patterns and extend to larger ones only when the frequency
of the pattern is above a certain frequency threshold.

In graph databases the frequency of a pattern has been effectively computed as
the number of distinct graphs containing an appearance of the pattern. However, the
same implementation cannot be used in single large graphs, as each pattern would
have frequency either equal to 0 or to 1. Furthermore, if we simply define the fre-
quency as the number of distinct occurrences of the pattern, the apriori property does
no hold anymore [45]. In fact, this implementation counts every overlap that may
occur among the instances of the same pattern, hence assigning larger frequencies
to larger patterns, causing an unwanted (and unjustified) skew in the value of impor-
tance for some patterns. For this reason, alternative metrics have been considered in
the literature [45,13,8], with the more prevalent one being the MNI support, as it
enjoys high effectiveness [12].

Many real world scenarios are naturally modeled through weighted graphs, and
in these cases, the importance of a pattern should be determined not only by the
frequency, but also by the weights of its appearances. Examples include the discovery
of metabolic pathways in genomic networks [25], where weights indicate strength
between genomes [10], the identification of topics of interest in large knowledge
graphs [33], where weights quantify the degree a piece of data is qualified as an
answer to a user [46], or the detection of common problematic cases in computer
networks, where weights indicate congestion [7]. Unfortunately, weighted patterns do
not possess the apriori property, since the weights of the extra edges/nodes of a larger
pattern may offset its lower frequency. As a consequence, some works that considered

1The current paper is an extended versions of a recent EDBT’18 article [38]
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Mining Patterns in Graphs with Multiple Weights 3

weighted graphs for pattern mining proposed solutions that are less efficient than
those based on the apriori property [50].

Moreover, a requirement in modern applications is to offer personalized products
and services rather than generic preferences [39]. Such generic preferences suit the
user on average but fail to deliver the right answer for each specific user. That is,
we should offer to each user information that is tailored to their specific interests or
preferences. The same argument holds when mining for graph patterns. That is, there
might be a discrepancy between patterns that are frequent in general, and patterns that
are relevant to a single user. For instance, social network systems record user inter-
actions [24] and activities [6] and build graphs by modeling the relationships among
users and web content to find frequent patterns of interactions [34]. Yet, some pat-
terns of interactions may be more important than others to an advertiser depending on
the product or the specific business model. Since the interaction graph is queried by
multiple advertisers, each one with their own targets, multiple weights are required
to distinguish the diversity of preferences. Other examples include on-line retailers
like Amazon, which build large graphs on product co-purchases and then exploit the
discovered patterns to recommend future offers to their customers [41]. Frequency,
number of items, recency of the purchase, as well as the company’s business inten-
tions affect the importance of some co-purchases with respect to others [39]. The
same argument is true for many other use-cases.

Example Consider a heterogeneous citation network that includes authors, papers,
venues, and terms (keywords). In his graph, edges connect papers with their authors,
the works they cite, the venue where they were presented, and with the keywords
appearing in the title and in the keyword list.

Frequent pattern mining in such networks finds patterns that mainly contain top
venues and terms related to research fields with high engagement. In fact, these labels
appear very often in the graph, and thus are characterized by a larger support.

On the other hand, we can weight the nodes and edges of the network accord-
ing to the user preferences, which can be inferred from the papers she published, her
coauthors, or the keywords she used and liked. Since the graph can be accessed by
multiple users, each one with their own preferences, each single edge is associated
with multiple weights, one for each user. Mining relevant patterns in such multi-
weighted network allows us to guide each user in the exploration of the literature
related to their own research interests. For instance, a researcher working in the field
of machine translation is unlikely to be interested in patterns describing the largely
studied area of data mining.

The examples above highlight the need for a solution that on the one-hand is able
to mine patterns based on their weights instead of limiting to their frequency, and on
the other hand, accounts for the individual preferences expressed as a multi-weighted
graph, as opposed to “one size fits all” solutions where only a single set of weights
is considered. We note that the straightforward approach to multi-weighted pattern
mining that runs the mining algorithm on each weighted graph separately, is clearly
impractical due to the graph size and the large number of users to handle.
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4 Giulia Preti et al.

In this paper, we propose a novel approach to mine patterns in weighted graphs
that goes beyond frequencies, yet has performance not significantly different from
the pattern mining in unweighted graphs. We achieve this by defining a novel family
of scoring functions that are based on the MNI score [8], a metric that is widely
used in graph mining due to its characteristic of respecting the apriori property, while
being efficient to compute. The solution we have devised is modeled as a constraint
satisfaction problem (CSP), as proposed also for unweighted pattern mining [12], and
implements a strategy called pattern growth approach [48]. Furthermore, we extend
the idea above for the case of graphs with multiple weights on their edges/nodes.
To avoid running the algorithm one time for each different weighting function, we
compute all the scores of each pattern at the moment we are visiting it, and keep the
patterns that return a high score with respect to at least one weighting function.

In particular, we make the following contributions:

1. We extend the task of pattern mining in weighted large graphs for a novel family
of scoring functions based on the MNI support [8] (Section 2).

2. We introduce and formally define the problem of pattern mining in multi-weight
graphs with different weighting functions.

3. We devise two efficient and effective techniques for solving the pattern mining
problem on multi-weighted graphs (Section 3). The first finds an exact solution,
called RESUM, that is less time and space consuming than the (naive) brute force
approach. It avoids redundant revisits of the graph, by aggregating and perform-
ing once multiple computations on the same parts of the graph, and storing the
relevant patterns in a compact way. The second is a conservative approximate so-
lution, called RESUM approximate, that reduces the number of weighting func-
tions to consider, by aggregating those having a high probability to generate sim-
ilar results (Section 4) into a single representative function. In addition, we show
that this method introduces only few false positives, while running considerably
faster than the exact approach.

4. We propose a distributed version of RESUM able to scale to large graphs. This
algorithm runs on top of the distributed graph processing system Arabesque [43].

5. We study four different scoring functions (all based on the MNI support) for
devising the score of a pattern in an efficient way (Section 6).

6. We evaluate our approaches with an extensive set of experiments on both real and
synthetic graphs and discuss our findings, in particular we showcase advantages
and limitations of the exact solution when compared to the approximate solution,
as well as to the distributed version of the algorithms (Section 8).

2 Problem Definition

We assume the existence of a countable set of labels S that includes the special sym-
bol ?, and a set I

1
0 = [0,1][ {?} of weights. The symbol ? in S and I

1
0 is used

to denote no label and no weight, respectively. A weighted graph is a structure that
consists of a set of nodes, a set of edges between them, an assignment of labels to all
the nodes and edges, and an assignment of weights to all the edges.
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Fig. 1 Example of a edge-labeled, weighted graph.

Definition 1 A weighted labeled graph, or simply a graph, is a tuple hV,E,`,wi
where V is a set of vertices, E ✓V ⇥V is a set of edges, ` : E [V ! S is a labeling
function, and w : E ! I

1
0 is a weighting function. The symbol G is used to denote

the set of all the possible graphs.

Definition 1 assumes that the weights are in the range of [0, 1]. Some applications
may allow the weights of any positive or negative value, but such values can be scaled
down to [0,1]. Others may assume categorical values. Even in this case, the values
can be mapped to numbers depending on their semantics. For example, in the case
in which the values express preference, the value extremely needed can be replaced
with 1, moderately needed with 0.5, and not wanted with 0. For the edges that have
no weight, the 0 value can be assumed.

Note that we assume weights on edges only, mainly for presentation purposes.
Weights on nodes can also be considered with no need for any major modification.
A graph S:hVS, ES, `, wi is said to be a subgraph of another graph G:hVG, EG, `,
wi, denoted as SvG, if VS✓VG and ES✓EG. Note that the two graphs have the same
labeling and weighting function.

To express the fact that two graphs have the same topological structure, we use
the notion of isomorphism, which is a bijective mapping between the nodes of the two
graphs such that the edges between the nodes, alongside their labels, are preserved
through the mapping.

Definition 2 A graph G:hV , E, `, wi is isomorphic to a graph G0:hV 0,E 0, `0, w 0i,
denoted as G'G0, if there exists a bijective function f :V!V 0 such that: 8hu, vi2E :
hf(u), f(v)i2E 0 and `(hu,vi) = `0(hf(u),f(v)i).

A graph G may have multiple isomorphic graphs. To collectively represent those
graphs, we introduce the concept of pattern. Intuitively, a pattern is a graph with no
weights, serving as a representative of a set of isomorphic graphs and describing their
common structure.

Definition 3 A pattern is a graph hV,E,`,wi, such that 8e 2 E : w(e) = ?. The
symbol P denotes the set of all possible patterns. Given a graph G, and a pattern P,
the support set of the pattern P is the set SG(P) = {g|gv G^g' P^P 2P}. Each
element in SG(P) is referred to as an appearance (also a matching or an embedding)
of P in G.
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6 Giulia Preti et al.

By definition, the support set of P is the set of all the subgraphs of G that are iso-
morphic to P. By abuse of notation we write Pv G and call the pattern P a subgraph
of G if its support set is non-empty. Then, we denote by f P

g : G 7!P the bijection that
maps an isomorphic subgraph g of G to the pattern P.

Given a scoring function f : P⇥G!R, we will refer to the value f (P,G) as
the score of P in G. Graph pattern mining is the task that aims at identifying those
patterns that have score higher than a threshold t , or the k patterns with the high-
est score [12]. A natural scoring function is the one that returns the cardinality of
SG(P), i.e., the number of appearances of the pattern P in the graph G, and the pat-
terns identified by this function are called frequent patterns. Nevertheless, it has been
shown that this simple function violates the a-priory property, due to the presence
of overlapping isomorphisms in G [8]. As an example, the frequency of the pattern
P1 : [v1]�B� [v2]�A� [v3] in the graph in Figure 1 is 3, while the frequency of its
sub-pattern P2 : [v1]�B� [v2] is 1. For this reason a number of works have investi-
gated alternative scoring functions [17,45,27,13]. Among them, the MNI support is
highly effective and efficient to compute [8].

Definition 4 Given a graph G : hV , E, `, wi, the MNI support of a pattern P:hVP,
EP, `P, wPi in G is the number MNI(P,G) = min

v02VP
|N (G,v0)| where N (G,v0) = {v |

v2V ^ 9g2SG(P) such that f P
g (v)=v0}.

Intuitively, the set N (G,v0) contains all the nodes of G that are mapped to the
pattern node v0 by some isomorphism f P

g from g to P. Then, the MNI support is the
minimum cardinality of this set across all the nodes of the pattern P. We can define
similar sets also for the pattern edges, i.e., for each e0 2 EP, the set E (G,e0) = {e|e 2
E ^9g 2 SG(P) such that f P

g (e) = e0} contains all the edges of G that are mapped
to the pattern edge e0 by some isomorphism f P

g (e). Consider, for instance, the graph
G in Figure 1 and the pattern P : [v1]�B� [v2]�A� [v3]. Since N (G,v1) = {1,3},
N (G,v2) = {1,3}, and N (G,v3) = {2,4,5}, the MNI support of P is 2. On the
other hand, the number of appearances of P in G is 3: SG(P) = {[3]�B� [1]�A� [2],
[1]�B� [3]�A� [4], [1]�B� [3]�A� [5]}.

In the presence of weights on edges, the score of a pattern cannot be based only on
the frequency, but should strike a balance between frequency and weights, allowing
also the weights to play a role in assessing the relevance of the pattern. Thus, there is a
need for a different scoring function that looks beyond the structure of the subgraphs,
by considering the importance of their edges as well. In this case, we talk about
weighted frequent patterns, or relevant patterns. This alternative scoring function,
however, has to be carefully selected to satisfy the apriori property [50].

Furthermore, if there are multiple weighting functions, i.e., several functions that
assign weights on the graph edges/nodes, then the pattern mining task must be carried
out for each individual function. An example of graph with multiple weights on the
edges is illustrated in Figure 2. This may happen, for instance, in the case where each
set of weight is assigned to a distinct user with a specific set of preferences. Such
situation leads to the following specification of the mining task.
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Fig. 2 Graph with two weights < w1,w2 > on each edge.

Pattern Mining in Multi-Weighted Graphs. Given a threshold t , a scoring function
f and a graph G : hV , E, `, W i, where W is a finite set of weighting functions, we
must discover, 8wi 2W , the set of patterns Ri = {P|G0 = hV,E,`,wii^ f (P,G0)� t}.

3 Score-Based Pattern Mining

Our solution to the pattern mining on weighted graphs problem consists of two steps.
The first step is the identification of the frequent patterns and their embeddings that
satisfy the constraints on the weights imposed by the scoring function used. In the
second step, a score is computed for each pattern (and for each weighting function in
the case of multi-weighted graphs) in terms of the appearances in its support set that
were selected in the first step.

3.1 Assessing the relevance of a pattern

A scoring function can be based on different factors, some of which may be desirable
for one applications, while others for another. Thus, there are no scoring function
that is consistently better than others, and for this reason we do not advocate for a
single one-size-fits-all scoring function. Instead, we propose a framework that can
accommodate a wide range of different functions.

Assuming that larger weights indicate higher importance, a desirable scoring
function should assigns a large score to patterns that frequent and also have large
weights. In particular, we require the scoring function to satisfy the following proper-
ties: (i) the larger the edge weights in the appearances of a pattern Pin a graph G, the
larger the score f (P,G) is; (ii) the higher the number of appearances of the pattern P
with positive edge weights, the larger the score f (P,G) should again be; and (iii) the
scoring function f is MNI-compatible, i.e., f (P,G)�t =) MNI(P,G)�t .

Property (i) states that among two patterns with the same number of appearances,
the pattern whose appearances have largest edge weights receives the largest score.
Property (ii) guarantees that when all the appearances have the same edge weights,
the pattern with more appearances obtains the largest score. We note that these two
properties are a natural consequence of our assumption on the importance of the
weights. Last but not least, Property (iii) allows efficient implementations of the rel-
evant pattern mining algorithm, as it ensures we can use the same pruning strategies
adopted in the MNI-based pattern mining algorithms. Note that, according to (iii), for
a pattern to be relevant, it is not enough to be frequent, i.e., MNI(P,G)�t does not
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8 Giulia Preti et al.

Algorithm 1 RELEVANTPATTERNMINING
Input: Graph G : hV,E,`,wi, score threshold t
Output: Set of relevant patterns R
1: R RELEVANTEDGES(G)
2: fE FREQUENTEDGES(G)
3: while fE 6= /0 do

4: e fE.pop
5: R R[ PATTERNEXTENSION(G,e,t, fE[{e})
6: return R

7: function PATTERNEXTENSION(G,g,t, fE)
8: Cand /0; S /0
9: for each e 2 fE do

10: Cand Cand[{g⇧ e}
11: for each c 2 Cand do

12: (score,sup) EXAMINEPATTERN(G,c)
13: if sup� t then

14: S S[ PATTERNEXTENSION(G,c,t, fE)
15: if score� t then

16: S S[{c}
17: return S

guarantee that f (P,G)�t . In Section 6, we introduce a set of scoring functions that
satisfy the aforementioned properties.

3.2 Mining weighted graphs

Finding the frequent patterns on weighted graphs requires the computation of the
frequency and the score of each pattern. To this end, we propose RESUM, an effi-
cient and effective general algorithm for any MNI-compatible score that exploits the
pruning power of the anti-monotonicity property of the MNI support.

We model the frequent subgraph mining as a constraint satisfaction problem
(CSP) [11]. An instance of the CSP problem is a tuple (X ,D,C) where X is a set
of variables, D is a set of domains corresponding to the variables in X , and C is a
set of constraints between the variables in X . A solution for an instance of the CSP
is an assignment from the candidates in D to the variables in X that satisfies all the
constraints in C. The matching problem for a pattern P v G is then translated into
CSP(P) = (XP,DP,CP), so that any solution for CSP(P) corresponds to a subgraph g
isomorphic to P.

Specifically, each node v 2VP is mapped to a variable xv 2 XP, each domain Dv 2
DP is a subset of V containing all the graph nodes isomorphic to v, and C includes
consistency constraints that enforce a topology isomorphic to that of P [30]. Then, for
each candidate node n 2 Dv we search for a valid assignment that maps n to v. If no
assignment is found, n is removed from the domain Dv and the topology constraints
are checked again until no invalid candidate is found in the other domains. At the end
of the process, the number of elements in the smallest domain, i.e., argminDv2DP

|Dv|,
corresponds to the MNI support of P, as defined in Definition 4. Therefore, given
a score threshold t , P is frequent if each variable in XP has at least t distinct valid
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Mining Patterns in Graphs with Multiple Weights 9

Algorithm 2 EXAMINEPATTERN
Input: Graph G:hV,E,`,wi, pattern P, score threshold t
Output: Score and MNI support of P
1: for each v 2VP do

2: supv /0
3: Dv {v02V |`(v0) = `(v)}
4: A  automorphisms of P
5: STRUCTURALCONSISTENCY({Dv|v 2VP},P)
6: for each v 2VP do

7: if 9w = A (v)s.t.Dw already computed then

8: Dv Dw
9: continue

10: STRUCTURALCONSISTENCY({Dv|v 2VP},P)
11: if 9Du s.t. |Du|< t then return (�1,�1)
12: for each n 2 Dv do

13: search for g s.t. g' P ^ n 2Vg ^ n 7! v
14: if g 6= Nil then

15: Valid ISVALID(g,w)
16: for each n0 2Vg, v0 2VP s.t. n0 7! v0 do

17: mark n0 in Dv0

18: if Valid then

19: supv0  supv0 [{n0}
20: else

21: remove n from Dv

22: score RELEVANCESCORE({supv|v 2VP})
23: mni minv2VP |Dv|
24: return (score,mni)

assignments. This means that if the size of some domain Du is lower than t , P cannot
be frequent. Notice that in general not all the matching subgraphs of a pattern satisfy
the constraints on the weights forced by the scoring function used, and thus we must
additionally check each of them to determine if it contributes to the score of the
pattern. The aggregated score is then computed considering only the matches not
discarded.

Algorithm 1 outlines the RESUM framework. First, the relevant and the frequent
edges are found (Lines 1-2). Then, each subgraph is recursively extended following
the pattern-growth approach introduced by gSpan [48] (Line 5), until no other exten-
sion is possible. Each extension is a candidate relevant pattern, whose MNI support
is computed alongside its score by the EXAMINEPATTERN procedure (Algorithm 2).
This procedure first initializes the candidate domain Dv of each pattern node v 2 VP
with all the nodes in G with the same label as v (Lines 1-3), and the support set supv
of each node v 2 VP with the empty set. Then, the algorithm computes the automor-
phisms of the pattern (Line 4). Automorphisms are isomorphisms of a graph to itself
and can be used to compute the valid assignments more efficiently (Lines 7-8), since
each assignment valid for a pattern node v is valid for each automorphic node w too.
Finally the algorithm iterates over each candidate node n 2 Dv to determine if it be-
longs to some subgraph g isomorphic to P (Lines 12-13). As soon as such subgraph
is found, all the domains are updated (Lines 16-17) and the subgraph is checked for
validity (Line 15). In particular, the ISVALID procedure compares the edge weights
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Fig. 3 A weighted labeled graph containing the patterns P1 : [v1]�A� [v2] and P2 : [v1]�A� [v2]�C� [v3].

in g against the constraints specified by the scoring function f , and if g satisfies the
condition, the nodes of the subgraph are stored in the corresponding support sets
(Line 19). These nodes will contribute to the relevance score of P.

On the other hand, if n does not participate in any isomorphism, it is removed
from Dv. As a consequence, in the subsequent iteration, structural constraints like the
minimum degree of a node mapped to a v 2 VP are enforced, to remove candidates
that can no longer participate to any isomorphism of P (Line 10). The algorithm
terminates either when all the pattern nodes have been examined, or when the size
of some domain becomes lower than t , as in this case P can be neither relevant nor
frequent (Line 11). In the first case, instead, the MNI support and the relevance score
of P are calculated and returned. We refer to Section 6 for a discussion about suitable
scoring functions that can be implemented in Procedure ISVALID.

Finally in Lines 13-17 of Algorithm 1, all the frequent patterns are further ex-
tended, while all the relevant patterns are included in the final set of relevant patterns
R.

Note that, unlike the MNI support, the scoring function f is not necessarily anti-
monotonic. As an example consider the graph G in Figure 3 and a function f : P⇥
G !R that counts the number of appearances of P with a large average edge weight.
Using the relevance threshold 0.4, the score of the pattern P1 : [v1]�A� [v2] is 1
because only the appearance [1]�A� [2] has average edge weight above 0.4 (0.7).
On the other hand, the score of its extension P2 : [v1]�A� [v2]�C� [v3] is 2 because
both the appearances [1]�A� [2]�C� [3] and [4]�A� [5]�C� [6] have a large
average edge weight (0.65 and 0.45 respectively). Since the score of a larger pattern
can be greater than the score of a smaller one, the function f does not satisfy the
apriori property.

As a consequence, we must expand also the patterns with score below t in order
to find all the relevant patterns in the graph. However, Property iii guarantees that the
score of a pattern is upper bounded by its MNI support, and therefore we can safely
call Procedure PATTERNEXTENSION only for the frequent patterns (Lines 13-14).

Complexity. Even though the computation of the automorphisms (O(|VP||VP|)) and
the pruning strategy improve the expected performance of the algorithm, in the worst
case it takes C = O(2|V |2 · |V ||VP|) time, which is exponential in the number of nodes
and the size of the patterns. In particular, O(2|V |2) is the time required to compute
all the patterns in G, and O(|V ||VP|) is that needed to find all the isomorphisms of a
pattern P.
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Mining Patterns in Graphs with Multiple Weights 11

Algorithm 3 EXAMINESUBGRAPHMULTI
Input: Graph G:hV,E,`,W i, pattern P, score threshold t
Output: Scores and MNI support of P
1: for each v 2VP do

2: Dv {v02V |`(v0) = `(v)}
3: for each i 2 1, . . . , |W | do

4: SUPv[i] /0
5: A  automorphisms of P
6: STRUCTURALCONSISTENCY({Dv|v 2VP},P)
7: for each v 2VP do

8: if 9w = A (v)s.t.Dw already computed then

9: Dv Dw
10: continue

11: STRUCTURALCONSISTENCY({Dv|v 2VP},P)
12: if 9Du s.t. |Du|< t then return ({�1, . . . ,�1},�1)
13: for each n 2 Dv do

14: search for g s.t. g' P ^ n 2Vg ^ n 7! v
15: if g 6= Nil then

16: VAL ISVALID(g,W )
17: for each n0 2Vg, v0 2VP s.t. n0 7! v0 do

18: mark n0 in Dv0

19: for each i 2 1, . . . , |W | do

20: if VAL[i] then

21: SUPv0 [i] SUPv0 [i][{n0}
22: else

23: remove n from Dv

24: S  RELEVANCESCORES({SUPv|v 2VP})
25: mni minv2VP |Dv|
26: return (S ,mni)

3.3 Mining in multi-weighted graphs

In the case of multiple edge weights assigned by m weighting functions W = {w1, . . .
,wm}, the naı̈ve approach for solving the Pattern Mining in Multi-Weighted Graphs
problem runs Algorithm 1 |W | times, once for each function. This approach becomes
impractical for large m, as the process of mining the patterns is computationally in-
tense. In fact, this process would take O(Cm) to terminate.

The naı̈ve approach recomputes the same patterns multiple times, incurring in a
significant time overhead that can be avoided by running the algorithm only once
and keeping track of the relevant patterns for each weighting function. This strategy
replaces Line 12 in Algorithm 1 with Algorithm 3, which searches for the isomor-
phisms of the pattern P, while checking their validity with respect to each wi 2W ,
at the same time. Similarly to the single weight case, we initialize each candidate
domain and all the support sets for each weighting function (Lines 1-4). When an
isomorphic subgraph is found, procedure ISVALID checks in parallel each set of
edge weights against the constraints set by the scoring function and stores the results
in the auxiliary array VAL. If the weights assigned by wi satisfy the constraints, the
nodes of the subgraph are stored in the corresponding sets SUPv[i] (Line 21).

Finally, all the scores of the candidate pattern c are evaluated in Line 16 of Al-
gorithm 1, and c is added to the final set R only if at least one of its scores is larger
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12 Giulia Preti et al.

than t . As a further optimization, instead of storing in memory the sets of relevant
patterns for each function wi, we maintain a binary vector of size m for each relevant
pattern P, where position i is set to 1 if P is relevant for wi.
Complexity. The automorphisms of each pattern P are computed once (O(|V ||VP|)),
while the m scores are computed incrementally as new subgraphs isomorphic to P are
found (O(|V ||VP| · |VP| ·m)). Even though the search of isomorphisms stops as soon
as all the m scores exceed the relevance threshold, in the worst case we must find all
of them. The complexity is therefore O(2|V |2 · (|V ||VP|+m · |VP| · |V ||VP|), which can
be approximated to O(2|V |2 ·m · |VP| · |V ||VP|). If we can assume that the size of the
pattern |VP| is negligible, the complexity becomes O(2|V |2 ·m · |V ||VP|).

4 Approximate Algorithm

The exact algorithm introduced in Section 3 incurs a significant memory overhead
when the number of weighting functions is in the order of thousands, which, for ex-
ample, is the case for recommender systems for big retailers (e.g., Amazon). For such
applications, we devise a more conservative approximate solution, called RESUM ap-
proximate, that significantly reduces the memory consumption by taking advantage
of the similarities between the weighting functions w1, . . . ,wm 2W .

The RESUM approximate algorithm first generates k⌧ m representative func-
tions w⇤j , by clustering and aggregating the original functions wi. Then, it runs Algo-
rithm 3 to compute k sets of relevant patterns R⇤1, . . . ,R

⇤
k , which are used to build m

approximate sets of relevant patterns A1, . . . ,Am, returned in place of the exact sets
R1, . . . ,Rm. Clearly, the quality of the approximate result depends on the way the rep-
resentative functions are generated. With our implementation, we aim at returning a
set A j for each wi that resembles the exact set Ri as much as possible.

4.1 Generation of the representative functions

The generation of the representative functions is shown in Algorithm 4 and consists of
three steps. First, each weighting function wi 2W is transformed into a feature vector
(Line 1). Secondly, the weighting functions are clustered into k groups of similar
functions (Line 2). Thirdly, the set of k representative functions W ⇤ = {w⇤1 , . . . ,w⇤k }
is returned (Lines 3-4).

Creation of the feature vectors

In the first step, we construct a feature vector ri for each wi, which is used in the
second step to determine the similarities between the functions. Since our final goal is
to assign a set of patterns Ai to each wi that is as close as possible to the exact set Ri,
a straightforward choice is to use the edge weights as features. We call this approach
full-vector strategy. According to this strategy, Procedure 1 decides an ordering of
the graph edges and creates m vectors r1, . . . ,rm of size |E|, where ri[x] is the weight
assigned by wi to the edge in the xth position.

Although similar edge weights lead, with high probability, to similar sets of rele-
vant patterns, the effectiveness and the efficacy of the full-vector strategy decrease as
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Mining Patterns in Graphs with Multiple Weights 13

Algorithm 4 GENERATEREPRESENTATIVEFUNCTIONS
Input: Graph G : hV,E,`,W i, number of buckets b, number of clusters k
Output: Set of representative functions W ⇤
1: F  CREATEFEATUREVECTORS(E,W,b)
2: C  COMPUTECLUSTERING(F ,k)
3: W ⇤  GENERATEMAXWEIGHTVECTORS(C ,W )
4: return W ⇤

Algorithm 5 CREATEBUCKETFEATUREVECTORS
1: function CREATEBUCKETFEATUREVECTORS(E,W,b)
2: for each l 2 SE do

3: BucketListl  COMPUTEBUCKETLIMITS(El ,W,b)
4: for each wi 2W do

5: r
l
i  FILLBUCKETS(El ,wi,BucketListl)

6: for each wi 2W do

7: ri CONCATE({r
l
i |l 2 SE})

8: return
�

r1, . . . ,r|W |
 

the size of the graph increases. In fact, the high dimensionality of the vectors compli-
cates the detection of functions with similar properties, as a consequence of the curse
of dimensionality phenomenon [42].

Thus, we propose also a more efficient approach called bucket-based strategy,
which overcomes the problem of high dimensionality by considering the edge labels
in place of the graph edges, as features to build the vectors. The underlying idea is
that, in real scenarios, a preference for an edge is highly correlated with the preference
for the label of that edge. This strategy is implemented in Procedure CREATEBUCK-
ETFEATUREVECTORS (Algorithm 5), which takes the set of weighting functions W
and the number of buckets b, and generates a set of feature vectors r1, . . . ,rm each
of size |SE | ·b, where SE indicates the set of distinct edge labels. In particular, each
vector ri is the concatenation of |SE | summaries of the edge-weights of wi, one for
each edge label, and b is the resolution of each summary.

The summary for a label l is obtained by splitting the range of admissible weights
[0,1] into b of sub-ranges (buckets) (Line 3), e.g., [0,x1), [x1,x2), and [x2,1.0] for
b = 3. Then Procedure FILLBUCKETS (Line 5) counts, for each sub-range, how many
times the function wi assigns a weight within that sub-range to an edge with label l.
Note that, in the degenerate case of b = 1, the vector ri simply keeps, for each label,
the number of edges with that label and whose weight is greater than 0.

The bucketization of a label l is performed by Procedure COMPUTEBUCKETLIM-
ITS (Line 3) following the equi-depth paradigm [15], which assigns the input values
to buckets, while trying to balance the number of elements in each bucket. Thus, we
consider all the weights assigned by all the weighting functions to edges with label l,
and split the range [0,1] into b depth-balanced intervals.

For example, given b= 2, the label ordering A |C, and the two weighting functions
w1 and w2 in Figure 1, we obtain the vectors r1 = [1,3,2,0] and r2 = [3,1,0,2]. As
such, the buckets of A are the ranges of values [0,0.3] and [0.3,1], and those of C the
ranges [0,0.5] and [0.5,1].
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14 Giulia Preti et al.

Note that the bucket-based strategy allows us to decide the size of the feature
vectors apriori and tune the parameter b to improve the accuracy of the clustering.

Identification of similar functions

Procedure COMPUTECLUSTERING (Algorithm 4, Line 2) implements the Lloyd’s
clustering algorithm [29], which identifies groups of similar wi by comparing the
feature vectors r1, . . . ,rm 2F using the cosine similarity.

The algorithm can be initialized either providing k random seeds among all the
vectors in F , or by selecting the k most diverse feature vectors. Note that finding the
most diverse vectors may increase the running time of the algorithm, but this strategy
allows the discovery of better separated clusters. Moreover, the algorithm can either
be executed until convergence or can be run in iterative steps. In the first case it finds
k clusters, while in the second case it runs multiple times with k ranging from 2 to
some maximum value kmax, and then returns the clustering with largest silhouette
coefficient.

Generation of the representative functions

Given the set of clusters C , Procedure GENERATEMAXWEIGHTVECTORS (Al-
gorithm 4, Line 3) generates a representative function w⇤j for each cluster Cj. Differ-
ent choices of w⇤j can lead to different sets of patterns R⇤j , which can contain patterns
not relevant for some wi 2Cj, as well as missing out patterns relevant for some other
wl 2Cj. However, as stated in the following theorem, we resort to take the maximum
among the weights to prevent missing any relevant pattern:

Theorem 1 Given a cluster Ci, and a MNI-compatible scoring function f , a complete
set of relevant patterns for Ci can be mined using the representative function w⇤i
defined as 8e 2 E , w⇤i (e) = maxw j2Ciw j(e).

Proof By definition, only the subgraphs that satisfy the constraints on the weights
through the scoring function f can contribute to the score of a pattern. Moreover, the
larger the weights of a subgraph, the higher the chances that such subgraph fulfill
those constraints. Since the function w⇤i assigns to each edge e 2 E the largest weight
among those of the weighting functions in the cluster Ci, i.e., 8w j 2 Ci ,w⇤i (e) �
w j(e), the chances that a matching subgraph contributes to the score of a pattern is
higher for w⇤i than for any w j 2Ci. It follows that 8w j 2Ci f (P,w⇤i ) � f (P,w j), so
if a pattern is relevant for some w j 2 Ci, it is also relevant for w⇤i . Thus, the set of
mined patterns is complete.

Given the sets of relevant patterns R⇤1, . . . ,R
⇤
k discovered by Algorithm 1 using the

representative functions w⇤1 , . . . ,w⇤k , we create a pattern set Ai for each function wi
using the patterns in the set R⇤j for j  k .wi 2Cj, i.e., each function wi receives the
set of relevant patterns of the cluster to which it belongs.
Complexity. The generation of the k representative functions for the m weighting
functions requires the creation of the feature vectors (O(m · |E|)), the identification
of similar functions (O(I · k ·m · b · |SE |), where I is the number of iteration of k-
means, and b · |SE | is the size of the feature vectors), and the computation of the
maximal weights for each edge and for each cluster of functions (O(m · |E|)). Then,
the k sets of relevant patterns are found running the algorithm described in Section 3
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Mining Patterns in Graphs with Multiple Weights 15

(O(2|V |2 ·k · |V ||VP|)). Since k, I and b are negligible, and |SE |= |E| in the worst case,
the complexity of RESUM approximate reduces to O(m · |E|+2|V |2 · k · |V ||VP|).

4.2 Quality of RESUM approximate

The RESUM approximate algorithm reduces the problem of pattern mining in graphs
with m weights on each edge to finding k sets of relevant patterns R⇤j , with k⌧m.
The quality Q of the solution can be measured in different ways, according to the
requirements of the user or the application. The most common quality measure used
in the literature is the accuracy, which is defined in terms of precision and recall. In
our case, since Theorem 1 ensures a total recall, we consider the average precision of
the sets Ai with respect to the exact sets Ri:

Q =
1
m

m

Â
i=1

|Ri\Ai|/|Ri| (1)

The quality Q can be measured also in terms of the average distance between the
patterns in the sets Ri and those in the sets Ai. As shown in Section 8, the distance
between two patterns can be calculated using the normalized Levenshtein distance,
and the distance between two pattern sets as the average normalized Levenshtein dis-
tance among the pairs of closest patterns in the two sets. According to this measure,
Ai is a good solution for wi if the patterns in Ai have structure and labels similar to
the patterns in Ri.

5 Distributed Algorithm

To overcome the challenges of dealing with very large graphs, distributed graph pro-
cessing systems have been introduced [43,31]. Those systems scale by distributing
the computation among multiple machines communicating with each other. More-
over, they are usually designed such that all the details related to the distribution, the
message-passing, and the synchronization, are hidden behind simple API that allow
non-expert users to implement efficient and scalable algorithms [43,31].

In the following, we show to apply our weighted pattern mining framework in the
distributed settings by designing a distributed version of RESUM. We chose to im-
plement our algorithms on top of Arabesque [43], a framework for distributed graph
mining that differs from other existing platforms (e.g., Pregel [31]) in the program-
ming paradigm adopted. In fact, Arabesque follows the Bulk Synchronous Parallel
model [44], but centers the computation around the task of searching for embeddings.
That is, every machine is delegated to retrieve the appearances of the patterns in the
graph. This programming model is specifically designed for the implementation of
graph pattern mining algorithms, instead of generic vertex-centric computations (like
those supported by Pregel [31]).
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16 Giulia Preti et al.

5.1 Distributed Relevant Pattern Mining

Since distributed pattern mining algorithms take into account only the frequency of
a pattern, to implement relevant pattern mining in this distributed setting, two im-
portant extensions are required: an appropriate data-structure for the storage of the
embeddings that can keep track of their weights (especially for the case of multiple
weighting functions), and the implementation of aggregation functions that for the
computation of the MNI-compatible scoring functions. In particular, for the aggrega-
tion functions, in the case of multiple weights, it is important to aggregate the support
sets of each weighting function.

The computation proceeds via a sequence of supersteps in the Bulk Synchronous
Parallel model, where a master coordinates and collects the results from a cluster
of workers. Given an initial set of embeddings in the graph, the task of the workers
is to identify all the possible expansions of each of them, i.e., embeddings with an
additional edge, which will be used to compute the frequency of the corresponding
patterns. In the first step of the computation, the initial set contains only a special
undefined embedding, whose set of expansions is the edge set of the graph. This
set is collected by the master as input for the next step of computation. In each of
the following supersteps, the master broadcasts the set of embeddings received in
the previous superstep, while the workers expand those corresponding to frequent
patterns and give back the new expanded embeddings to the master. The computation
halts when the new set of embeddings is empty.

Upon receiving the embeddings, the workers use Round Robin on large blocks
of embeddings to partition them. A different subset of embeddings is thus assigned
to each worker to be filtered and processed. Since the number of embeddings in a
graph increases exponentially with the graph and the pattern size, the workers use a
special data structure called Overapproximating Directed Acyclic Graph (ODAG) to
store them in a compact way. ODAGs trade space for time by over-approximating the
set of embeddings they want to store, hence entailing additional work to extract only
the actual embeddings from them and avoid the generation of spurious patterns.

Once restored the valid embeddings I, the workers run the procedures shown in
Algorithm 6. When processing an embedding e, the worker must first determine if it
corresponds to a frequent pattern, since embeddings of infrequent patterns will not be
expanded. The frequency values are computed via a MapReduce job (Line 8) where
the mappers send the ODAGs of the same pattern to the reducer responsible for that
pattern, and the reducers aggregate the domains and the support sets contained in the
ODAGs received. The aggregation of the domains (support sets) consists in comput-
ing the union of the domains Dv (support sets supv) of each vertex v of the pattern
P. As described in Section 3, the domains are used to compute the MNI support of
Pe, while the support sets to compute its relevance score. In the initialization of the
support sets of Pe, the mapper runs procedure ISVALID to check whether the weights
of e satisfy the constraints specified by the scoring function or not. If they pass the
validity test, the nodes of e are stored in the support sets; otherwise the sets are left
empty.

At the end of the aggregation, if all the domains have size greater than t (Line 16),
the pattern is frequent and thus its embeddings are further processed (Line 2). Sim-
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Mining Patterns in Graphs with Multiple Weights 17

Algorithm 6 DISTRIBUTEDRELEVANTPATTERNMINING
Input: Set of initial embeddings I, score threshold t
Output: Set of expanded embeddings F
Output: Set of relevant patterns R
1: for each e 2 I do

2: if AGGREGATIONFILTER(e) then

3: Cand EMBEDDINGEXPANSION(e)
4: for each e0 2 Cand do

5: if ISCANONICAL(e0) then

6: PROCESS(e0)
7: F F[{e0}
8: PATTERNAGGREGATION(F)

9: function AGGREGATIONFILTER(e)
10: Dv1 , . . . ,Dvn  GETDOMAINS(e)
11: supv1 , . . . ,supvn  GETSUPPORTSETS(e)
12: mni minvi

��Dvi

��
13: score RELEVANCESCORE({supv|v 2VPe})
14: if score� t then

15: R R[{Pe}
16: return mni� t

17: function PROCESS(e)
18: MAP(Pe, {Dvi}vi2VPe , {supvi}vi2VPe )
19: REDUCE(P, {D1

vi
, . . . ,Dm

vi
}vi2VP , {sup1

vi
, . . . ,supm

vi
}vi2VP )

ilarly, if all the size of all the support sets exceeds t , the pattern is inserted in the
relevant pattern set R that will be output to the underlying distributed file system
(Line 14). We recall that the MNI support mni is the minimum among the sizes of the
domains (Line 12), while the evaluation of the score depends on the scoring function
chosen (Line 13). To speed up the computation, the reducers actually stop merging
the values in the domains/ support sets that have already exceeded the threshold,
hence terminating the ODAG aggregation when all the domains/ support sets contain
enough values.

All the embeddings retained are expanded by Procedure EMBEDDINGEXPAN-
SION(Line 3), which adds one additional edge in all the possible positions. Since
the workers have access to a local copy of the graph, they do not need to communi-
cate and exchange information in this phase. Nonetheless, the same embedding can
be generated by multiple workers as a result of processing the same set of edges in
different orders. To avoid duplicate embeddings, one of the ordering is elected as
canonical (Line 5), so that all the others can be safely pruned. All the extensions of
canonical embeddings are stored in a set F that will be sent to the master at the end
of the superstep (Line 7).

To reduce the amount of messages that will be sent through the network, the work-
ers perform a MapReduce job locally (Line 6) to aggregate the extensions related to
the same pattern, hence building an ODAG for that pattern. In the Map phase, the
domains Dv and the support sets supv of the pattern Pe of e are initialized with the
ids of the nodes of e (Line 18). In the reduce phase, the domains and the support sets
related to the same pattern P are aggregated in the same way as when running Proce-
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dure PATTERNAGGREGATION. To identify the canonical pattern Pe of e, the workers
use a technique called two-level pattern aggregation. In the first level, they create a
so-called quick pattern by scanning all the edges of the embedding and extracting the
corresponding labels. In the second level, they compute the canonical pattern of each
quick pattern and reorder the list of domains and support sets of the quick pattern ac-
cording to the canonical vertex ordering. When computing the canonical patterns, the
workers also search for automorphisms that will be exploited to insert all the elements
in a domain Dv to the domains of the symmetric counterparts of v. Note that the two-
level pattern aggregation technique reduces the complexity of Procedure PROCESS,
as the graph isomorphism tests required to aggregate the embeddings are performed
for the smaller number of quick patterns rather than the larger number of embeddings.

Time complexity. At the beginning of each superstep, each worker must first extract
the valid embeddings from the ODAGs, then generate the canonical extensions of the
embeddings associated to frequent patterns, and finally produce the ODAGs for the
next step. The cost of the first operation is upper bounded by the number of paths
contained in the ODAGs, i.e., O(|V ||VP|). The cost of the second operation is the
sum of the cost of computing the frequency of the pattern associated to each ODAG
(O(|VP| · |V |2) = O(|V |2)) and that of creating the canonical extensions of each em-
bedding retained (O((|VP|+1)(|VP|+1) · |V |(|VP|+1))). The last operation consists in per-
forming the two-level pattern aggregation to generate a single ODAG per canonical
pattern (O((|VP|+ 1) · |V |(|VP|+1)) to generate the quick patterns, and O(|V |(|VP|+1))
to generate the canonical patterns). The total time required to perform each superstep
is therefore O(|VP|(|VP|+1) · |V |(|VP|+1)).

Space complexity. Each worker has access to a copy of the input graph. In addition,
at the beginning of each superstep, it receives every ODAG produced in the previous
step, and thus must keep in memory |VP| vectors of integers. The maximum number
of integers to store for all the ODAGs is |VP| · |V |2.

Machine-to-machine communications. At the beginning of each superstep, the ma-
ster sends all the ODAGs of the previous step to all the workers. In the worst case,
every embedding is associated to a different pattern, and therefore the number of these
messages is upper bounded by num workers · |V ||VP|. At the end of each superstep, a
map-reduce job is executed to aggregate the ODAGs associated to the same canonical
pattern, that is O(|V |(|VP|+1)), as all the ODAGs of the same patterns must be sent to
the reducer responsible for that pattern and then all the aggregated ODAGs are sent
to the master. The total communication cost is O(|V |(|VP|+1)).

6 Pattern Evaluation

A number of scoring function satisfying Property i, Property ii, and Property iii can
be proposed and implemented in Procedure ISVALID and RELEVANCESCORE in Al-
gorithm 2 and 3. Nevertheless, to demonstrate the flexibility of our framework, we
propose here four different scoring functions that can be used to assess the relevance
of a pattern in a weighted graph. They are called ALL, ANY , SUM and AVG. We chose
these functions because of their intuitive semantics and their suitability for various
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scenarios that may pose different requirements or provide a different interpretation
of the edge weights. Moreover, as they are defined by the MNI support of the pattern
over a specific restriction of its support set, they are MNI-compatible by definition,
and thus they preserve the apriori property.

The ALL, ANY , SUM and AVG scores differ in the choice of which subgraphs
they include in the support sets of the patterns P and in how they aggregate the edge
weights of such subgraphs. In particular, ALL, ANY , and SUM rely on an additional
system-dependent parameter, called relevance threshold a , that is used to select the
subgraphs that contribute to the score, while AVG is parameter-free.

In the following we provide a formal definition of the four scoring functions.

ALL The ALL score considers only the subgraphs whose edge weights are larger
than the threshold a as valid appearances of a pattern P. Specifically, the ALL score
of P is its MNI support computed over the restricted set of appearances S0G(P) =
{g |g= hVg,Eg,`,wi^g2 SG(P)^8e2Eg, w(e)>a}, that is, fALL(P,G)= minvP2VP��N (G,vP) �S0G(P)

��, where N (G,vP) �S0G(P)
= {v|v 2 V ^ 9g 2 S0G(P) . f P

g (v) = vP}
is the restriction of N (G,vP) to the subset S0G(P)✓ SG(P).

In graphs like protein-to-protein interaction networks, this score retrieves patterns
characterized by an overall confidence greater than a certain value.

ANY The ANY score takes into account only the appearances of a pattern having at
least one edge with weight above the threshold a . Hence, the ANY score of P is the
MNI support of P over the set of appearances S0G(P) = {g |g = hVg,Eg,`,wi ^ g 2
SG(P)^9e 2 Eg .w(e)> a}, i.e., fANY (P,G) = minvP2VP

��N (G,vP) �S0G(P)
��.

This score is suitable especially for the cases in which only partial weights are
available (e.g., product reviews for some product), to find patterns that are overall
interesting (e.g., the entire transaction comprising the product), as well as super-
patterns around relevant core structures.

By definition, the ANY score of P is always equal or larger than its ALL score, as
any appearance of P considered by fALL is considered also by fANY , while in general,
the opposite is not true. For example, given the graph in Figure 2 and the relevance
threshold a = 0.4, the subgraph g : [1]–A–[2]–C–[4] does not contribute to the ALL
score of P : [v1]–A–[v2]–C–[v3], but contributes to its ANY score.

SUM For the SUM score of P, a subgraph g contributes if the sum of its weights is
larger than the threshold a . The restricted support set obtained in this way is S0G(P) =
{g |g = hVg,Eg,`,wi^g 2 SG(P)^Âe2Eg w(e)> a}. The MNI support over this set
is the SUM score of P: fSUM(P,G) = minvP2VP

��N (G,vP) �S0G(P)
��.

This score accounts for the overall pattern weight in scenarios like money trans-
actions, where it is beneficial to sum each single contribution in order to judge the
complete value of a structure.

Note that if an appearance of P has some weight greater than a , then the sum of
all its weights is at least a , and therefore fSUM(P,G)� fANY (P,G). For example, all
the appearances considered by ANY in computing the score of P : [v1]–A–[v2]–A–
[v3] for a=0.4 in Figure 2 are considered also by SUM, whereas the subgraph g :
[3]–A–[4]–A–[8] contributes to the SUM score only.
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AVG In contrast to the previous scoring functions, the AVG score is not defined in
terms of the minimum cardinality among some node sets of the pattern, but in terms
of the relative weights of its appearances. In general, the score of a pattern P can be
a function of the sum of the weights of the subgraphs in its support set, and this is
called the weighted support (WSUP) of P. In particular, WIGM [50] proposes a mea-
sure called normalized weighted support (NWSUP), which is the weighted support
of P divided by its size |EP|, i.e., NWSUP(G,P) = WSUP(G,P)/|EP|. Nevertheless,
this scoring function is not MNI-compatible. In order to guarantee the apriori prop-
erty and be consistent with the other MNI-compatible scoring functions, we com-
pute WSUP(G,P) by first retaining, for each edge set E (G ,eP) with eP 2 EP, the set
E (G ,eP) �µ of µ edges with largest weight, and then summing up all those weights,
i.e., WSUP(G,P) = ÂeP2EP Âe2E (G ,eP)�µ w(e). Setting µ to be the MNI support of P
we guarantee that the AVG score is bounded by the MNI support, as stated in the
following theorem:

Theorem 2 Given a graph G:hV,E,`,wi, a pattern P, and an edge e 2 E, it holds
that fAV G(P ⇧ e,G) MNI(P,G), where P ⇧ e is an extension of P with EP⇧e = EP [
{e}.

Proof Since the MNI support has the apriori property [8], it holds that MNI(P ⇧
e,G)  MNI(P,G). By definition, the pattern P ⇧ e has the maximum normalized
weight f ⇤AV G(P⇧e,G) when all the edges in E (G ,e) �µ have weight 1, and hence each
subgraph contributes with a total weight of (|EP|+1). In this case, f ⇤AV G(P⇧ e,G) =
MNI(P ⇧ e,G) · (|EP|+ 1)/(|EP|+ 1), and thus fAV G(P ⇧ e,G)  f ⇤AV G(P ⇧ e,G) =
MNI(P⇧ e,G)MNI(P,G). ut

According to this theorem, although AVG does not have the apriori property, the
AVG score of a pattern is at least bounded by the frequency of its sub-patterns, making
it MNI-compatible and allowing early pruning during the pattern search. In fact, if
the MNI support of P is lower than t , then all its super-patterns can be discarded.
On the other hand, fAV G(P ⇧ e,G) can be higher than fAV G(P,G) even though the
frequency of P ⇧ e is lower, because the weights of the edges in E (G ,e) �µ can be
so large that they compensate for the lower frequency. For example, the AVG score
of P : [v1]–C–[v2] in the graph G in Figure 2 is 0.6, because MNI(P,G) = 1 and
E (G ,C) �1= {(1,4)}. Instead, the AVG score of P : [v1]–C–[v2]–B–[v3]–A–[v4] is
0.8, because E (G ,C) �1= {(1,4)}, E (G ,B) �1= {(1,3)}, and E (G ,A) �1= {(3,5)}.

6.1 Implementation

To implement ALL, ANY , and SUM in our framework, function ISVALID checks every
match g of P in its support set, by comparing its edge weights against the relevance
threshold a , according to the corresponding definition of S0G(P). Then, Procedure
RELEVANCESCORE computes the MNI support over the support set S0G(P). On the
other hand, for the AVG score, Procedure ISVALID returns always True, while Pro-
cedure RELEVANCESCORE calculates the normalized sum of the top-k edge weights
of every pattern edge, where k = minv2Vg |Dv|.
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7 Related Work

We survey the main solutions for pattern mining in graph databases, single graphs,
and probabilistic graphs. While previous work has tackled the problem of pattern
mining in weighted graphs to a certain extent, no solution has been proposed for
pattern mining in multi-weighted graphs.

Graph databases. Graph databases are collections of graphs such as chemical com-
pounds, transactions, and workflows. Two main approaches have been proposed for
pattern mining in unweighted collections of graphs: apriori-based methods, and pat-
tern-growth methods. The apriori-based approaches generate frequent structures in-
crementally, by merging smaller frequent patterns [26]. Pattern-growth methods, on
the other hand, generate one structure at a time, expanding each pattern in a depth-
first fashion [48,19].

Regarding weighted graphs, a few pattern-growth methods have been recently
introduced [21] to embody weights into the support measure. Additionally, WFSM-
MR [4] further extends such approaches in a distributed manner on top of the MapRe-
duce framework.

Nevertheless, frequent pattern mining in graph databases employs a support mea-
sure, i.e., the number of graphs containing a specific pattern, that cannot be used to
mine patterns in large graphs, as each pattern would have a support equal to 1 or 0.

Single Large Graphs. Pattern mining in large graphs requires the support measure to
be adjusted to account for edges shared by multiple subgraphs [8]. To this end, alter-
native support measures satisfying the apriori property have been proposed, alongside
efficient algorithms using such measures. SUBDUE [17] is the first pattern mining
algorithm in single graphs and adopts an approximate greedy strategy based on the
Minimum Description Length (MDL). Other support measures include the maximum
number of edge-disjoint matchings [45], the Maximum Independent Set (MIS) sup-
port [27], and the Harmful Overlap (HO) [13] support. Nonetheless, the latter two
measures require NP-complete problems to be solved, rendering them unsuitable in
many practical scenarios. In contrast, the Minimum Image-based (MNI) support can
be computed efficiently [13]. This measure is used by GraMi [12] and its parallel
extension ScaleMine[1], which optimize the computation of the frequent patterns via
a constraint satisfaction problem approach. Yet, as opposed to the problem we tackle
in this work, GraMi and all the support-based approaches disregard weights on the
edges of the graph and do not generalize to the case of multi-weights.

The first work on weighted large graphs is WTMaxMiner [14]. However, WT-
MaxMiner restricts the problem to mining path patterns, which can be efficiently
discovered as opposed to subgraphs. To the best of our knowledge, WIGM [50] is the
only work that deals with weighted pattern mining in large graphs, defining the im-
portance of a pattern as the average weight over its appearances. Although weighted
patterns do not naturally possess the apriori property, WIGM adopts a weaker prun-
ing strategy based on the so-called 1-extension property. Differently from WIGM,
our solution, RESUM is scalable and efficient since it uses measures (a.k.a. scoring
functions) that satisfy the apriori property and are based on the MNI support. Addi-
tionally, RESUM is a more general framework that supports multi-weighted graphs,
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degree label frequency
dataset |V | |E| |S | min/avg/max min/med/avg/max t a
FREEBASE-T 7.2k 10k 40 1/2.8/504 3/70/251.3/2.8k 90 .05
FREEBASE-C 16.7k 26k 77 1/3.2/1082 1/66/348.5/4.8k 155 .05

AMAZON 163k 296k 4 1/3.6/1072 2k/12k/30k/113k 130 .00011710 1/1/95/142k
CITESEER 2.1k 3.6k 21 1/3.5/99 15/55/174.7/988 95 .05
FREEBASE-O 1.9M 2.4M 19294 1/2.4/46k 1/1/103/237k 6000 .05

SHOP-S 11k 12k 80 1/3/35 1/60/161/3k 76 .0524 1/100/467/2.8k

SHOP-M 163k 296k 81 1/3/129 3/606/1.6k/30k 759 .0524 6/1k/4.6k/28k

SHOP-L 1.1M 1.2M 81 1/3/583 5/5.9k/16k/305k 7580 .0524 60/10k/46k/280k

SHOP-XL 11M 13M 81 1/3/3868 115/60k/160k/3M 76124 .0524 600/100k/467k/2.8M

Table 1 Real (top) and synthetic (bottom) datasets with default t,a parameters.

as well as a broad family of scoring functions, showcasing the WIGM support mea-
sure as one example (see Section 6).
Uncertain graphs. Uncertain graphs include existence probabilities for edges or
nodes of the graph. To some extent, uncertain graphs can be seen as a special case
of weighted graphs in which probabilities arises, for instance, from random walk
approaches, and represent the likelihood that an edge exists between two nodes. Few
works have been proposed to mine frequent patterns in uncertain graphs [52,20,36,9,
47,28]. As opposed to weighted graphs, support measures for uncertain graphs must
consider the uncertainty in the edges and compute the support as an expected value.
Moreover, the time complexity of mining in such graphs is exponential in the worst
case, since any edge can either exists or not, and hence all the possible combinations
must be considered.

8 Experiments

We first compare the scalability of our exact algorithm with the performance of our
approximate algorithm. The results demonstrate that RESUM approximate allows
faster response time, yet retaining good accuracy in terms of the patterns returned.
We then study the behavior of RESUM distributed under different settings to identify
in which cases we can benefit more from the distribution, as well as understanding
when the overhead of a distributed system may lead to performances worse than those
of single-machine algorithms [32].
Datasets. We run experiments on both real and synthetic datasets of different sizes,
and in particular, we used five real networks and four randomly generated graphs. All
the datasets are listed in Table 1 together with their characteristics, i.e., the number
of vertices |V |, edges |E|, and labels |S |; the minimum, average, and maximum node
degree; and the minimum, median, average, and maximum edge label frequency.

For the AMAZON and the synthetic datasets we report statistics for both edge (top)
and node labels (bottom). We also report the default frequency (t) and relevance (a)
values used in the experiments (unless otherwise stated). Experiments on the quality
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of RESUM and RESUM approximate, and on their scalability, were conducted on the
first four real datasets; the scalability of RESUM and RESUM distributed was tested
on the last two real datasets and the synthetic datasets.
• FREEBASE-T and FREEBASE-C are directed subgraphs extracted from the knowl-
edge graph FreeBase 2, which is a database collecting structured information about
real-world entities like people, places and things for various topics. We obtained the
two samples by restricting the graph to the topic travel and computer respectively,
and then we kept only the largest weakly connected component in the restriction.
• AMAZON3 [16] is a directed graph representing items, purchases, and user ratings.
We considered the subgraph of electronic products, in which every node represents a
product, a category, or a brand, and a link represents items bought together, bought
in subsequent transactions, or viewed on the website one after the other. Weights
represent individual user review scores (from 1 to 5), and we considered only users
with more than 100 reviews. Given the sparsity of the weights, we used Personalized
PageRank to spread the user preferences to products other than those they rated, as it
is a standard technique for recommendations [2]. In this way we obtained weights not
only for the items reviewed, but also for the most related items. Each edge weight is
actually computed as the average between the PageRank value of its endpoint nodes.
• CITESEER [12], is a graph representing Computer Science publications and cita-
tions between them. The labels on the edges indicate the area in which the two papers
were published (e.g., a database conference).
• FREEBASE-O is a undirected, node-labeled subgraph extracted from FreeBase and
restricted to the topics organizations, business, finance, and government. The node
labels refer to the types of nodes, obtained by following “instance of ” edges.
• SHOP-S, SHOP-M, SHOP-L, and SHOP-XL are synthetic graphs generated using
the gMark framework [5], which creates labeled graphs with a user-defined schema
that specifies constraints on the number of nodes and labels, the proportions of nodes
and edges per label, and the degree distribution. We used the shop.xml schema pro-
vided by the framework, which encodes an online shop network consisting of sellers,
users and products, according to the specifications in the WatDiv default schema [3].
This schema contains 24 node labels, 82 edge labels, default probabilities for each
label, and specifies a different degree distribution (uniform, Gaussian, or Zipfian) for
each combination of node and edge labels allowed.
Experimental setup. RESUM is implemented in Java 1.8 on top of the constraint
satisfaction problem presented in GRAMI [12] whose code was kindly provided by
the authors4. The code of our implementation and all the datasets we used are pub-
licly available5. We also compare with a frequent pattern mining approach (FREQ)
based on GRAMI, which is also implemented in Java 1.8. All the single-machine
experiments were run on a 24 Cores (2.40GHz) Intel Xeon E5� 2440 with 188Gb
RAM with Linux 3.13.

2developers.google.com/Freebase/data
3jmcauley.ucsd.edu/data/amazon/
4github.com/ehab-abdelhamid/GraMi
5https://github.com/lady-bluecopper/ReSuM
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RESUM distributed is implemented in Java 1.8 on top of the Arabesque frame-
work, which is in turn built as a layer on top of Apache Spark [51] (v. 2.0.0). All
the multi-machine experiments were run on a cluster of 7 machines: the master is a
8 Cores machine with 80Gb RAM and Linux 14.04, while the workers are 16 Cores
machines with 30Gb RAM and Linux 14.04.
Generating the weights. Since we had real weights only for the AMAZON graph, to
test the scalability of our method with a larger number of weighting functions, for
the other datasets we created synthetic weights based on the results of a user study
we conducted on the Crowdflower6 platform. We extracted a sample from the Free-
Base knowledge base, restricting the domain of the edge labels to five topics (Music,
Books, Celebrities, Movies, and Sport). Then we asked the users to rate each graph
edge (i.e., fact) according to their preferences, using a relevance value between 1 and
5. Once collected the relevance values from 123 users, we modeled the distribution of
the edge weights with respect to the number of facts. We found that the edge weights,
after normalization, are distributed as a Gaussian with mean 0.452 and variance 0.02.
In addition, we noted that, on average, a user rated above 0 between 10% and 20%
of the labels, and thus we concluded that real graph weights are usually quite sparse.
Therefore, we uniformly subset edge labels according to our findings and generated
weights normally distributed in [0,1].

Furthermore, in order to evaluate the performance of RESUM and RESUM ap-
proximate with different weight distributions, we generated sets of synthetic edge
weights, varying a focus parameter representing the ratio of weighted edges for each
edge label. The edge weights were sampled from a normal distribution N (µ,s2)
and a Beta(a,b ) distribution, hence allowing us to prove the effectiveness of our al-
gorithms under normally distributed weights and exponentially distributed weights.
We set µ = 0.5 and s = 0.25 for the normal distribution and a = 0.7,b = 5 and
b = 0.7,a = 5, for the Beta distribution. The two choices of the parameters for the
Beta distribution represent two extreme of an exponential behavior: the former con-
centrates the probability mass on low weights, the latter on large weights. The focus
parameter takes values in the range {0.5,0.8} for the normal distribution and in the
range {0.25,0.5,0.75,1} for the Beta distribution.

8.1 Frequent vs Weighted Pattern Mining

We compared the patterns returned by a frequent pattern mining algorithm (FREQ)
and our algorithm RESUM to validate our claim that frequent pattern mining returns
a large number of low-weight patterns, which, instead, are correctly discarded in
relevant pattern mining. Unless otherwise stated, we report the average of 10 different
randomly sampled weighting functions. In particular, these weights were sampled
from a normal distribution using focus 0.5, as previously described.

Figure 4 reports the average number of patterns found using different scoring
functions on the four datasets, with default parameters, as shown in Table 1. We
observe that FREQ returns patterns, at least half of which are irrelevant with respect

6www.crowdflower.com
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Fig. 4 Average number of patterns found in each dataset, using different scores and default parameters.

FREEBASE-C FREEBASE-T
top-k ALL ANY SUM AVG ALL ANY SUM AVG
1 0.6 0.6 0.6 0.86 0.5 0.5 0.5 1
3 0.43 0.43 0.43 1 0.45 0.33 0.33 1
10 0.44 0.49 0.49 1 0.8 0.66 0.66 1

Table 2 Quality of FREQ vs RESUM on the top-k patterns.

to any of the four scoring functions. As expected, in all the datasets, ANY and SUM
return more patterns than ALL and AVG, due to the less restrictive conditions on the
weights. On the other hand, AVG returns a low number of patterns, mainly because
more than 50% of the edges have low or zero weight. Therefore, AVG is particularly
suited in graphs where weights are uniformly distributed in the entire graph, e.g.,
biological or chemical datasets.

We now discuss quality (Table 2), number of patterns, and running time of RE-
SUM compared to FREQ, when varying relevance (a) and frequency (t) thresh-
old (Figure 5 and 6). Here we report results for two datasets (FREEBASE-C and
FREEBASE-T), however we observe similar results also on the other datasets. In par-
ticular, as an example, within the top-5 frequent patterns in the AMAZON graph, we
found that the most frequently bought products are Sony appliances, but some rele-
vant patterns actually involve Nikon products. This result shows that Sony products
are popular but not interesting for all the users.

Quality of FREQ vs RESUM. Table 2 shows the quality of the patterns discovered by
FREQ, measured on the k most frequent patterns. We selected 10 random weighting
functions and mined the relevant patterns for each of them. The quality of FREQ is
measured as the average Jaccard similarity between the top-k frequent patterns and
the top-k relevant patterns. As expected, frequency is a bad predictor of relevance,
since most of the relevant patterns are not in top-k frequent patterns. Notably, for
AVG the quality is higher mostly due to the small or null number of patterns returned,
as reported in Figure 4.

Relevance threshold (a). Recall that the relevance threshold a is a system-depen-
dent parameter set only for ALL, ANY , and SUM. It can be easily tuned on demand
and strongly affects the number of patterns (Figure 5 (a) and Figure 5 (b)), because
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Fig. 5 Varying a: average number of patterns (top) and running time (bottom) in FREEBASE-C (a,c) and
FREEBASE-T (b,d).

the larger the value of a , the smaller is the number of appearances that are considered
valid, and thus the smaller is the total number of relevant patterns mined. We observe
that with a>0 the number of relevant patterns is less than half of the number of the
frequent ones. This behavior reflects the characteristics of the weights in the datasets,
as half of the edges have zero weight. Moreover, for FREEBASE-T, SUM, being the
most lenient scoring function, returns patterns even in the restrictive cases when a >
0.5 (Figure 5 (b)). Finally, since AVG does not depend on a , it always returns the
same patterns.

Figure 5 (c) and Figure 5 (d) show that the threshold a affects the running time of
RESUM mostly when ALL is used, as this function can prune the irrelevant patterns
earlier in the process. In fact, an occurrence of a pattern is discarded and not included
in the support set of any extension of the pattern, as soon as one edge weight is found
to be below a . On the other hand, for all the other scoring functions, the extension of
an invalid occurrence of a pattern can be valid for some super-pattern, and therefore
cannot be discarded until all its edge weights have been examined. As a consequence,
the running time of the algorithm is almost unaffected by a .

Frequency threshold (t). Figure 6 reports the behavior of RESUM and FREQ when
varying the frequency threshold t . We performed preliminary tests to decide a reason-
able range of values [tmin,tmax] for each dataset. In particular, the tmin corresponds to
the smallest value that allowed FREQ to terminate the computation within 48 hours,
and tmax is the maximum value returning a non-empty set of frequent patterns. The
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Fig. 6 Varying t: average number of patterns (top) and running time (bottom) in FREEBASE-C (a,c) and
FREEBASE-T (b,d).

choice of different ranges for each dataset is consistent with previous researches [12]
and reflects the observation that pattern frequency is dataset-dependent, while rele-
vance is user-dependent.

As we can see in Figure 6 (a) and Figure 6 (b), the number of frequent patterns
decreases almost linearly with t , and consequently the number of relevant patterns
decreases as well. Regarding the performance, as opposed to the relevance threshold,
the frequency threshold always alters the computation time, since higher values lead
to an early pruning of many patterns, and thus the algorithm terminates earlier. More-
over, Figure 6 (c) and Figure 6 (d) show that when t takes low values (i.e. between
150 and 180), RESUM runs up to two orders of magnitude faster in both the datasets.
Finally, as previously noted, ALL performs significantly better than the other scoring
functions.

8.2 Multiple Weighting Functions

We tested the scalability of RESUM in the case of multiple weighting functions,
varying their number between 50 and 50.000 in the real graphs, and between 1 and
1000 in the synthetic graphs. Similarly, we also measured time and quality of RESUM
approximate. Nevertheless, in the following we do not further discuss and report the
number of patterns retrieved for each weighting function and each scoring function,
since these results are consistent with what reported in the single edge weight case.
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Fig. 7 Scalability of RESUM: running time in FREEBASE-C and FREEBASE-T compared with the brute-
force approach (BF), varying number of edge weights, using AVG (a) and SUM (b); and running time in
SHOP-S, SHOP-M, SHOP-L, and SHOP-XL, varying number of edge weights, using AVG (c) and SUM
(d).
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Fig. 8 Scalability of RESUM: running time using AVG (a) and SUM (b) with a single edge weight (EW1)
and multiple edge weights (EW10, EW100, EW1000), varying the size of the graph.

Scalability: real graphs. Figure 7 shows the impact of the number of weighting func-
tions on the running time. We report the performance obtained with weights sampled
from a normal distribution with focus 0.5. Figure 7 (a,b) presents the comparison
between RESUM and the brute-force (BF) approach, which computes the patterns
for each weighting function separately. While BF scales linearly with the number
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Fig. 9 Scalability of RESUM and RESUM approximate: running time in FREEBASE-T (a) and
FREEBASE-C (b) using AVG and SUM, varying number of edge weights.

of weighting functions, the running time of RESUM is nearly constant with 5000
functions, and slowly increases as the number of edge weights approaches 50000.
As a pitfall, the memory requirement grows linearly with the number of weights for
both algorithms. Note that RESUM keeps all the edge weights and the scores in main
memory to speed up the score computation and the pattern evaluation respectively,
and thus the number of weighting functions it can handle heavily depends on the
available memory. On our machine, we were able to process up to 5000 functions
when using the AVG score (Figure 7 (a)), while we were able to scale larger than
5000 when using the SUM score (Figure 7 (b)).
Scalability: synthetic graphs. The synthetic graphs were generated using the same
degree distribution, and assigning the node and edge labels proportionally to their
size. As a consequence, they display relatively similar characteristics and can thus
be effectively used to test the scalability of our approaches in terms of the input
size only. Figure 7(c,d) shows the performances of RESUM in both the single edge
weight and the multi-weighted edge setting, when using the AVG (c) and the SUM
(d) scoring functions. The weights were generated using a Beta distribution with pa-
rameters a = 0.7, b = 5, and focus 0.75. Figure 8 (a,b) shows that adding one order
of magnitude to the size of the graph causes a performance degradation by up to
one order of magnitude for all the edge weight settings (EW), and this one order of
magnitude difference is maintained when increasing the number of weights per edge
(Figure 7(c,d)). On the other hand, an increase in the number of weights do not lead
to an equally steep increase in the running time.

Finally, we note that the performance with AVG is comparable to that of SUM,
even though AVG requires the algorithm to find all the embeddings of the pattern,
while SUM terminates the algorithm as soon as enough embeddings are found.

In Figure 9 (a, b) instead, we compare RESUM and RESUM approximate. For
these set of experiments, we generated the representative functions by first cluster-
ing the weighting functions using the bucket-based strategy. The clustering phase is
performed as a preprocessing and not reported, since it is agnostic to the choice of
the various thresholds and depends solely on the clustering algorithm (e.g., k-means,
hierarchical, or spectral). In particular, we tried numbers of buckets b of different or-
ders of magnitude and proportional to the frequency of the edge labels in the graph.
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1

Fig. 10 Case study: the most frequent pattern (above left), the most relevant pattern (above right), and two
top-5 patterns (below left and right) found in AMAZON.

Then, we run k-means using different k to study the impact of the number of clusters
on the quality and the running time of RESUM approximate. Finally, we set the de-
fault value of b of each dataset to the number of buckets that allowed the algorithm
to use at least one order of magnitude less memory than those consumed using the
full-vector strategy, i.e., 12 buckets for FREEBASE-T, 16 for FREEBASE-C, and 10
for CITESEER.

We observe that RESUM becomes impractical as the number of weighting func-
tions increases. As a matter of fact, when AVG is used, RESUM exhausts the avail-
able memory, hence returning no patterns. This behavior reflects the characteristics
of AVG, which requires the algorithm to exhaustively search for all the occurrences
of a pattern before computing its score. In contrast, RESUM approximate terminates
the computation. On the other hand, when SUM is used, RESUM is able to return the
relevant patterns; however, RESUM approximate outperforms the exact algorithm
again, taking nearly constant time to terminate. In conclusion, in all the cases of large
numbers of weighting functions, RESUM approximate performs better than RESUM
by at least one order of magnitude.

Effectiveness of RESUM: Case study. Figure 10 reports the most frequent pattern
(P1), the most relevant pattern for two randomly selected users u1 and u2 (P2), and a
pattern in the top-5 relevant patterns for u1 and u2 (P3 and P4 respectively), found in
the real network Amazon using the ALL score and the default settings in Table 1.

Pattern P1 shows that users who bought Sony products, frequently bought also
Belkin products in other transactions. This result makes sense, considering that Sony
sells electronics and Belkin accessories for computers, smartphones, and cameras.
On the other hand, pattern P2 confirms our claim that frequent patterns are not nec-
essarily the most interesting patterns for every user, as it contains other less popular
node labels, which indicate a more professional user. The high relevance score of P2
follows from the high ratings that users u1 and u2 gave to their Canon and Cowboy
Studio purchases. Note that Cowboy Studio is a US retailer selling camera acces-
sories such as tripods, lens, batteries, and flashes, and thus, the appearance of these
two node labels in the same pattern is realistic. Thanks to pattern P2 we know that
user u1 prefers the more professional Cowboy Studio accessories, and thus, if she
buys a new camera, we can recommend her a portrait umbrella rather than a cover
from Belkin.

Finally, patterns P3 and P4 prove that different users like different products, and
in particular, u1 expressed her preference for Logitech and Manfrotto, while u2 liked
Case Logic accessories for her Nikon purchases. As a consequence, we attest that our
algorithms can effectively help the design of personalized recommending systems.
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average pattern edit distance
|W | ALL ANY SUM AVG

50 0.195 0.069 0.069 0.627
500 0.192 0.062 0.062 0.618
5000 0.203 0.053 0.053 0.609
50000 0.204 0.052 0.051 �

average pattern edit distance
ALL ANY SUM AVG

clustering FREEBASE-T
A-POST 0.2 0.07 0.07 0.7
BUCK 0.2 0.06 0.06 0.62
clustering FREEBASE-C
A-POST 0.28 0.07 0.07 0.45
BUCK 0.27 0.07 0.07 0.39

Table 3 Quality of RESUM approximate varying the number of edge weights |W | in FREEBASE-T (left),
and using BUCK and A-POST clustering in FREEBASE-T and FREEBASE-C (right).

Quality of RESUM approximate. As mentioned in Section 4, we measure the qual-
ity of RESUM approximate in terms of the average distance between the patterns it
returns (sets Ai) and those returned by RESUM (sets Ri). We define the distance be-
tween two patterns as the minimum number of edges that should be added or removed
from the first to transform it into the second. Thus, the average distance between the
two sets of patterns {A1, . . . ,Am} and {R1, . . . ,Rm} measures the average number of
operations required to transform a pattern in Ai to a pattern in Ri. We recall that our
method is complete, and therefore no relevant pattern is missing. However, RESUM
approximate may return spurious patterns, which are patterns not relevant for any
function in the cluster. Computing the distance between the two pattern sets allows
us to understand how much a spurious pattern, on average, differs from the patterns
that are actually relevant for some weighting function in the cluster. Table 3 (left) re-
ports the distances obtained using the four scoring functions in FREEBASE-T. Here,
ANY and SUM exhibit the best quality; ALL performs reasonably good, despite being
more restrictive and therefore more sensitive to the approximation based on the maxi-
mum edge weights. On the other hand, when AVG is used, the quality of the answer is
quite poor. Nevertheless, this behavior is due to the extremely low number of patterns
this scoring function considers interesting, which skews the computation of the pat-
tern set distance. Note that, we do no report any value for the case of 50000 weighting
functions with AVG, since the algorithm exhausted all the available memory and did
not terminate. We conclude that, the additional patterns returned by RESUM approx-
imate are indeed closely related to the relevant patterns of each individual weighting
function.

Finally, we tested the capability of our bucket-based clustering (BUCK in short) to
correctly identify groups of similar weighting functions. To this end, we compared the
quality of the results mined using BUCK in the creation of the feature vectors of the
weighting functions, with the quality measured using a ground-truth clustering (A-
POST in short). The A-POST clustering was created using the sets of relevant patterns
R1, . . . ,Rm as feature vectors of w1, . . . ,wm, and then running a k-medoid algorithm.
We regard it as a ground-truth clustering, because it is obtained knowing what makes
two weighting functions really similar, i.e. their relevant patterns, and maximizing
the intra-cluster similarity. Table 3 (right) reports the comparison between A-POST
and BUCK on FREEBASE-C and FREEBASE-T. We recall that lower values mean
higher quality, as they indicate distances. We can see that we experience a quality
comparable with that obtained using A-POST, and thus we can conclude that our
clustering technique is indeed effective.
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Fig. 11 Varying focus in FREEBASE-C: number of patterns using SUM (a) and ALL (b) with focus between
0.25 (F25) and 1 (F100); and running time of RESUM and RESUM approximate with Beta(0.7,5) weights
with focus 0.25 (F25) and 1 (F100), using SUM, ALL (c), and ANY (d).

Impact of the Weights. For the experiments presented above, we weighted the Ama-
zon graph using real weights, and the FREEBASE-T, FREEBASE-C, and CITESEER
graphs with synthetic weights generated according to the results of our user study.
The common feature of these two kinds of weights is that they are highly sparse. It
is worth studying whether weights following other distributions or that are denser,
affect the performance of our algorithms. To this end, we performed an additional
set of experiments using weighting functions generated following a Beta(5,0.7), a
Beta(0.7,5) and a normal distribution with different densities (focus), as described at
the beginning of Section 8.

One would expect that, with higher densities, the cost of the computation would
be higher too. Although these expectations are reasonable, in the following we show
that the behavior of RESUM and RESUM approximate is consistent with what ob-
served in the case of sparse weights. Figure 11 (a) and Figure 11 (b) report the aver-
age number of patterns found using SUM and ALL, with weights generated using a
Beta(0.7,5) distribution with focus varying between 0.25 and 1 (i.e., all edges have
weight > 0). Comparing these results with those in Figure 4 when SUM is used, we
can see that the number of relevant patterns is largely affected by the presence of
more (or all) edges with non-null weight, meaning that the patterns mined are actu-
ally many more. On the other hand, when ALL is used, RESUM still finds a larger
number of relevant patterns, but the increment is not as large as in the SUM case.
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average precision
ALL SUM ALL SUM

0.25 0.5 0.75 1 0.25 0.5 0.75 1 0.5 0.8 0.5 0.8
|W | Beta(0.7,5) N (0.5,0.25)

50 0.22 0.20 0.21 0.26 0.17 0.53 0.74 0.91 0.15 0.18 0.36 0.54
500 0.21 0.21 0.24 0.27 0.18 0.53 0.74 0.91 0.18 0.20 0.44 0.57
5000 0.21 0.22 0.24 0.28 0.19 0.54 0.75 0.91 0.22 0.20 0.49 0.59
50000 0.21 0.22 0.25 0.28 0.19 0.54 0.75 0.91 0.22 0.21 0.51 0.59
|W | Beta(5,0.7)

50 0.19 0.23 0.42 1 0.34 0.73 0.94 1
500 0.21 0.24 0.42 1 0.36 0.73 0.94 1
5000 0.21 0.25 0.43 1 0.36 0.74 0.95 1
50000 0.21 0.25 0.44 0.99 0.36 0.74 0.95 1

Table 4 Quality of RESUM approximate with ALL and SUM on FREEBASE-C, with Beta(a,b ) and
normal N (µ,s2) weights generated using focus values in {0.25,0.5,0.75,1} and {0.5,0.8} respectively.

Regarding the running time, Figure 11 (c) and Figure 11 (d) show that the two al-
gorithms behave accordingly to what already seen in the previous experiments, mean-
ing that the fact there more patterns are mined do not downgrade the performance
heavily.

Finally, Table 4 displays the quality of RESUM in terms of average precision, as
defined in Equation 1. As we can see, our approximate algorithm achieves similar
quality values no matter which weight distribution is chosen. In addition, the denser
the weights in the graph, the higher is the average precision of the pattern sets mined.
Intuitively, this is due to the fact knowing a larger number of positive weights allows
the clustering algorithm to better detect which weighting functions are similar.

8.3 Distributed vs Centralized Pattern Mining

We first investigate in which cases the distributed algorithm (noted as Dist) offers an
advantage over the centralized one. When running both algorithms on the CITESEER
graph, Figure 12 (a,c) shows that the distributed version is always one order of mag-
nitude slower. It is important to note that CITESEER is a small and relatively dense
graph with few labels. This small number of labels translates into a small number of
candidate relevant patterns with large sets of matching embeddings. In this particular
type of graphs, the centralized algorithm can exploit the early termination condition
(Algorithm 2) and effectively exploit the CSP problem formulation, hence stopping
the materialization of new embeddings for a pattern as soon as the embeddings gen-
erated are sufficient to verify that the pattern has a high relevance score. On the other
hand, the distributed algorithm has each worker looking for embeddings separately.
Since the embeddings are merged only at the end of the computation step, the al-
gorithm cannot exploit the early termination condition, hence computing far more
embeddings than necessary.

RESUM distributed, instead, provides a clear advantage when we move to the
larger and richer FREEBASE-O graph. This graph has a higher number of labels,
which, paired with the larger size of the graph, allows for workers to share effectively
the workload and provide the answer in more than one tenth of the time required by
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Fig. 12 RESUM vs RESUM distributed: running time in CITESEER (a) and FREEBASE-O (b) varying t ,
using SUM and AVG; and running time in CITESEER (c) and FREEBASE-O (d) varying number of edge
weights, using SUM and AVG.

the centralized version (Figure 12 (b)). The striking difference between the perfor-
mance of the two algorithms in the two datasets, suggests that the distributed version
has to be preferred for larger and richer graphs, when many different patterns can
be retrieved. The same behavior is observed when changing the number of users
(Figure 12 (d)), proving that our strategy for the multi-weight pattern mining is still
effective in the distributed environment.
Varying number of workers. In order to better understand which dimensions affect
the most the performance of the distributed algorithm, we compared its running times
over both the CITESEER and the FREEBASE-O graph, when varying the number of
workers7 Figure 13 (a) shows that, with one or two workers, the RESUM distributed
is sensibly slower on the much smaller citation network than on the larger knowledge
graph. Note that for FREEBASE-O the algorithm returned around 30 relevant patterns,
while for CiteSeer it retrieved 66 patterns. Only when using 6 machines we were able
to run faster on the smaller graph.

In addition, Figure 13 (b) shows that the effects of the distribution remain the
same when varying the number of weighting functions we consider. This substanti-
ates our previous finding, namely, when the graph contains few very frequent patterns
the distribution strategy provided by Arabesque is not optimal as it is dominated

7For this experiment we kept a single edge-weighting function, and parameter a = 0.05, with t = 6000
for FREEBASE-O, and t = 100 for CITESEER.
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Fig. 13 Varying number of workers: running time of RESUM distributed in FREEBASE using SUM and
AVG with single edge weights (a) and using AVG varying number of edge weights.

1

10

100

1000

10000

S M L XL

TI
M

E 
(s

)

GRAPH SIZE

SUM-Dist
SUM-skew-Dist
SUM
SUM-skew

1

10

100

1000

10000

S M L XL

TI
M

E 
(s

)

GRAPH SIZE

AVG-Dist
AVG-skew-Dist
AVG
AVG-skew

1

10

100

1000

10000

1 10 100 1000

TI
M

E 
(s

)

# EDGE WEIGHTS

Shop-L-Dist Shop-L Shop-M-Dist Shop-M Shop-S-Dist Shop-S

a) b)

c)
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by the time required to compute an unnecessary large amounts of embeddings. As
a consequence, an embedding-based distribution cannot be generally recommended
for relevant pattern mining, although it provides higher load balance and less worker
communication than the most popular alternative distributed graph processing sys-
tems [43].
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Scalability We additionally compared RESUM and RESUM distributed on the four
synthetic graphs using default relevance threshold and frequency threshold 90, 900,
9000, 90000, respectively. At these frequencies, the graphs contain roughly the same
number of frequent patterns (47, 43, 44, and 45 respectively), hence allowing us
to analyze how the increasing number of embeddings per pattern affects the per-
formances of the two algorithms. For these experiments, we also sampled the edge
weights from two different distributions: a Beta distribution with parameters (0.7,5)
and focus 0.75, and a skewed distribution that simulates a user interested in a category
of products available in the online shop, and thus assigns a large positive weights to
the corresponding edges and zero to the others.

In Figure 14(a, b) we can see that RESUM distributed works better when the
weights are sparse, with AVG achieving performances comparable to SUM, similarly
to what observed for RESUM. In particular, the algorithm succeeded in extracting the
relevant patterns from the largest graphs with skewed weights, but was able to finish
the computation up to the graph of size L when the weights were drawn from the Beta
distribution. In the case of sparse weights, the number of embeddings satisfying the
condition posed by the scoring function is lower, and thus the workers must process
and send a lower number of embeddings through the network. The communication
between the machines is thus faster. In contrast, the running time of RESUM is not
significantly affected by the weight distribution, as it does not generate and keep in
memory all the embeddings in the graph, as opposed to the distributed framework.
In addition, we note that when the graph is small, the overhead of setting up the
distributed environment outweighs the cost of mining the relevant patterns, and thus
RESUM distributed takes more time than RESUM to complete the computation. On
the other hand, when the size of graph is large, so is the number of embeddings in the
graph, and thus the algorithm can suffer from delays in machine communication and
increasing cost of embedding generation.

Finally, Figure 14 (c) reports the running times of RESUM and RESUM dis-
tributed in the four synthetic graphs, varying the number of weights per edge. The
performance is consistent with the single-weight setting, thus demonstrating the su-
periority of the centralized algorithm and the complexity of developing practical and
scalable distributed solutions to graph mining problems.

9 Conclusions

In this paper we consider the problem of mining relevant patterns in weighted graphs.
As opposed to the previous graph pattern mining approaches, which are solely based
on the frequency of the patterns, our solution assesses the importance of a pattern
also in terms of the weights on the edges of its appearances. To solve this problem
efficiently we propose a novel family of scoring functions, called MNI-compatible,
which allow effective retrieval of relevant patterns. We study four different scoring
functions from this family. Those functions balance between frequency and weights,
while retaining the advantages offered by the apriori property, which is a powerful
mean to an effective and early pruning of the search space. As a natural extension,
we considered the complementary problem of mining patterns in graphs with multi-
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ple weights associated to the edges. We devised exact and approximate solutions and
proved the effectiveness and efficiency of the algorithms on real datasets. Finally, we
compared the performance of the centralized and the distributed version of our ap-
proach using graphs with different sizes and characteristics. We describe cases where
the distribution may be beneficial, and also show cases where a centralized algorithm
is still to be preferred, proving that distributing graph pattern mining algorithms ef-
ficiently and effectively is not a straightforward task. As a future work, we plan to
study the theoretical bounds on the clustering quality, and automatic approaches for
parameter selection.
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