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Abstract. Given a recommender system based on reviews, the chal-
lenges are how to effectively represent the review data and how to explain
the produced recommendations. We propose a novel review-specific Hy-
pergraph (HG) model, and further introduce a model-agnostic explaina-
bility module. The HG model captures high-order connections between
users, items, aspects, and opinions while maintaining information about
the review. The explainability module can use the HG model to ex-
plain a prediction generated by any model. We propose a path-restricted
review-selection method biased by the user preference for item reviews
and propose a novel explanation method based on a review graph. Ex-
periments on real-world datasets confirm the ability of the HG model to
capture appropriate explanations.

1 Introduction
Recommender Systems (RSs) utilize information about users’ past interac-
tions for recommendations, commonly referred to as Collaborative Filtering
(CF) [9,18,49,22,19,50]. Often, these methods lack scrutability and users may
not comprehend the reasons behind the recommendations [23]. Recent methods
have exploited reviews for recommendation and explainability [27,9,52], typi-
cally by presenting the user with a given recommendation and an accompanying
review that indicates what another user said about the item (see Figure 1).
Yet, many review-level recommenders select reviews based solely on the item
attention [9,27,52,35], disregarding the target user’s preferences in selecting the
explanation. Furthermore, some select the complete text, even when a review is
verbose and filled with irrelevant information.

In this work, we extract aspects and opinions from reviews and represent
them in a Hypergraph (HG) structure, where hyperedges connect sets of nodes
representing aspects and opinions occurring together. A review-based HG cap-
tures the interdependencies of reviews by different users and items (e.g., great
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Fig. 1. Review-level information connected to the item i3 recommended to the user u1

modelled as a hypergraph. Hyperedges are represented by the colored areas.
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quality in Figure 1), while capturing the intradependencies of aspects and opin-
ions in a review (e.g., fast shutter and great quality). It also captures n-order
correlations providing higher expressivity than binary relations in normal graphs.

Prior work focused on edge-labeled multigraph, which cannot easily model
the high-order interdependencies between reviews mentioning different aspects
and opinions [49,45,6]. They apply high-order graph convolutions, which can
capture interdependencies across, but not within a review. Furthermore, the at-
tention mechanism is often node-specific, as it does not take the user preferences
into account when computing the attention of neighboring nodes [49,44,59].

Using a HG to represent reviews, we get a one-to-one mapping between edges
and reviews while still capturing high-order interdependencies. Specifically, a re-
view ru,i 2 R is represented as a set of triples consisting of an aspect, an opinion,
and a sentiment, (a, o, s), where a2A, o2O, and s2{�1, 1}=S, often referred to
as phrase-level opinions. The set of aspects A and opinions O are extracted from
reviews, with the sentiment describing the polarity (e.g. not great). We opt for
modeling reviews as hyperedges, being sets of nodes, in a graph consisting of
users, items, aspects, and opinions. In Figure 1, we show an example of a review
representation where a single edge connects the item to the user and related
review’s phrase-level opinions; thus, enabling us to capture ternary or higher
intradependencies within the reviews. A HG consists of nodes V and hyperedges
E✓P(V)\{;}; formally defined as g=hV, Ei. We define our HG, containing inter-
actions, aspects, and opinions, as g, creating one edge for each review. Thus, we
capture the global connections, i.e., interdependencies between different nodes
and reviews, e.g., we can find that the aspect quality is important for the col-
laborative signal, and capture intradependencies within the individual reviews.

Our method, Hypergraph with Attention on Reviews (HypAR), takes into
account both the learned attention about the user’s reviews as well as the user’s
historical opinions about aspects when selecting a review as the explanation of a
recommendation. Hence, given the predicted user preference for an item, we en-
able a better-informed attention mechanism that exploits connectivity between
users, items, aspects, and opinions to provide an explanation. Furthermore, mod-
eling the reviews in a graph allows us to generate graph-based explanations by
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Table 1. Overview of methods. Review, Path, Graph Ex., and Word are the levels of
the explanations. (*) Could not reproduce methods based on given information.

Methods Graph Review Path Graph Ex. Word Source code
R3* [35] 7 4 7 7 (4) 7
AENAR [61] 7 7 7 7 (4) 7
SGMC [8] 7 7 7 7 7 7
HAGERec* [59], EIUM [20], KPRN [51] 4 7 4 7 7 7
HRDR [27], AHN [12], NARRE [9] 7 4 7 7 7 7
KGCN(-LS) [46][45] 4 7 (4) 7 7 4
KTUP [6] 4 7 4 (4) 7 4
KGAT [49], RuleRec [31], PGPR [58], RippleNet [44] 4 7 4 7 7 4
RMG [53] (4) 4 7 7 4 4
HUITA [52], HANN [11] 7 4 7 7 4 4
MTER [48] 7 7 7 7 4 4
TransNets [7] 7 4 7 7 7 4
TriRank [17] 4 7 7 7 (4) 7

HypAR 4 4 4 4 4 4

selecting relevant aspects and opinions; thus, we will present directly to the user
the salient points from the review. For example, based on our review attention
assigned to each review in Figure 1, we can select the most important reviews
connecting user u1 and item i3 and to extrapolate which parts of the review text
are most important, here the great quality of the lens. As such, the graph view
captures directly both the path-based reasoning and a succinct and structured
review representation as illustrated by the hyperedges.

Contributions. We summarize our contribution as follows: (i) We propose
a novel review representation using the HG structure and an accompanying ar-
chitecture that applies graph convolutions to incorporate sentiment polarity and
opinions. (ii) We provide a dual-view explanation: review-to-graph, which re-
sults in a novel graph explanation taking user preferences w.r.t. items, aspects,
and opinions into account. (iii) We construct a framework for explainable re-
commendations that is agnostic to the preference module. (iv) We define simple
quantitative evaluation measures for explainable graph recommendation in the
problem formulation. Through studies on four real-world datasets in different
domains, we show HypAR’s improvements upon baselines. Therefore, HypAR
is the first model with the ability to make both review-level and graph-based
explanations for its recommendations, providing ad-hoc explanations that are
integral to the recommendation process instead of weak post-hoc explanations.

2 Related Work

In recent years, Matrix Factorization (MF) methods [59,49,46,45,44] and graph-
based methods have become popular for CF [18,50,17]. Yet, limited work focus on
representing reviews as graphs. In the following, we will introduce recent works
using graphs and reviews as explanations, as well as related HG architectures.
Explainability. Multiple types of explanations have been proposed, from iden-
tifying areas of interest in product images [10] to finding relevant users or
items [28]. Previous works has used the attention mechanims in multiple re-
search areas [10,2,41], particularly some use it to select the most important
review as textual explanations [9,27,52]. In Table 1, we show various explaina-
bility options, as reviews written by users, paths selected in a graph, showing a
complete graph, and showing individual words. The first column is graph-based
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recommenders, clearly showing no graph-based recommendation methods provide

review explanations, with the exception of RMG [53]. However, RMG uses the
graph structure as the preference module and not for review-representation.

Reviews contain subjective opinions on different aspects and have been used
for explanations [27,12,52,9,53,7]. Specifically, some use review-level attention
mechanism [9,27,52] for explanations; however, these are unable to capture high-
order relationships between users and items. The attention mechanism used is
often item-specific, meaning non-personalized explanations, while those that uti-
lize a user’s preference, i.e. personalized explainations [12,11,7], are ill-suited for
ranking, requiring distinct unique computations for each user-item pair. There-

fore, instead of increasing the ranking complexity, we propose a novel review

selection method utilizing the HG structure based on the non-personalized at-

tention mechanisms. In the experiment section, we show our selection strategy
outperforms the non-personalized methodology.

Knowledge Graphs (KGs) [20,58,59,49,45] can supplement MF methods when
ratings are sparse. Information is either propagated inwards using Graph Neural
Networks (GNNs) [49,6] or outwards using ripples [44] to capture high-order con-
nectivities. Current KG based methods only exploit factual (instead of opinion-
based) explanations, e.g., a path would only describe a product, not any user
opinions. To provide an explanation that would match the subjective judgment
the user may have about a product, methods have explicitly extracted aspects
and opinions from reviews to generate opinionated explanations [48] or aspect-
level explanations [4,17,56,63], but they cannot capture high-order connections.
Hypergraph. The Hypergraph Neural Network (HGNN) [14] uses a GNN on
HGs; however as a HG’s edges are sets of nodes, the HGNN first aggregates
nodes ocurring in the edges and then the aggregates the edges a node occurs in.
HGNNs variants have been used for multiple tasks [47,55,16,54], often differing
in the HG construction methodology [42,16,60]. However, none of these methods
are explainable [24,38], or, if explainably, use a naïve explanation like producing
k-most similar items [8]. Yet, such ‘explanations’ are still opaque, as they not ex-
plain why items are similar. Instead, we set out to select reviews (hyperedges, not

nodes) as explanations, which provide relationships between items and aspects.

3 Methodology

Our method HypAR (Figure 2) consists of four modules: (i) review representa-
tion, which computes the embeddings for each review; (ii) review aggregation,
which aggregates the reviews’ embedding generating an opinion vector; (iii) pref-
erence computation, computing the user and item preference vectors; and finally
(iv) combine and predict module, which combines the vectors for ranking. In the
following, we define our problem and then expand on each module.
Problem formulation. We define the interaction matrix, given a set of users
U and items I, as I 2 {0, 1}|U|⇥|I|, s.t. Iu,i=1 if the user u has interacted with
the item i; otherwise 0. Similarly, for all interactions, we have a corresponding
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Fig. 2. Illustration of the embedding process of user u1.
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review ru,i if Iu,i = 1. For each interaction, we extract aspects mentioned in the
reviews and the given opinion, such as fast or worth, along with the sentiment.

The objective of our method is: (i) to rank items according to a user’s pref-
erence and (ii) to ensure that the ranking of items is explainable. Regarding the
recommendation objective, we model our task as a top-k recommendation prob-
lem, s.t., given a learned model ⇥, we are able to rank the items I based on their
likelihood of being liked by the user. For explainability, we predict both whether
the user will like/buy the product as well as the reason behind the choice. In
our model, we assume reviews to be concrete manifestations of the reasoning
behind the user preference. Thus, here we assume an explanation to be either a
given review or to be comparable to a review, i.e., a set " ⇢ A⇥O⇥S of aspects,
opinion, sentiment triples that justify the (predicted) user choice.

Based on this, we can identify two new forms of explainability metrics de-
scribing a good explanation ": (i) " is the set of aspect, opinion, sentiment triples
that constitute the actual review the user will write; or (ii) " can be used to de-
terministically separate items that will be ranked higher by the user. The first
case can intuitively be understood as a strong correlation between a given set of
aspects (e.g., fast shutter) and if a user would generally prefer items described
with those aspects to items selected based on another disjoint set of random as-
pects (e.g., long cable). For the second objective, we are interested in knowing if
the generated explanation matches the method’s ranking, i.e., if the user prefers
the item due to the explanation (fast shutter), we assume items matching the
explanation would be ranked higher than another random ranking.
Review Representation. Given an initial representation of nodes X0

2 R|V|⇥d

and our HG g, we define the incidence matrix H2{0, 1}|V|⇥|E|, indicating whether
v 2 V occurs in e 2 E , the diagonal matrices of edge degrees De and nodes
Dv, where the node degree is defined as d(v) =

P
e2E Hv,e, and the edge de-
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gree as d(e)=
P

v2V Hv,e [14]. To capture the semantics of each word we use
Word2Vec [33], as in [9,35], to learn the word embeddings and apply 2 layers of
Multi-Layer Perceptrons (MLPs) with tanh activation to transform the initial
aspect and opinion vectors from the word-embedding space into X

0.
We employ sentiment-specific linear transformation matrices and split our

HG into two HGs: one containing only positive phrase-level opinions and one
containing only negative phrase-level opinions (see Figure 2), allowing our model
to differentiate between positive and negative phrases. As such, we are able to
capture both the sentiment and the high-order connections, using:

X
(l) = 1

2

P
s2S D

� 1
2

vs HsD
�1
es

H
>
s
D

� 1
2

vs X
(l�1)

W
(
sl) (1)

where Hs, Dvs, and Des are the sentiment-specific incidence, node degree, and
edge degree matrices, respectively, and W

l
s
2Rd⇥d is the sentiment specific trans-

formation. The HG convolution is very similar to Graph Convolutional Network
(GCN) layers with an extra normalization using edge degrees. Yet, we are inter-
ested in capturing review-specific occurrences; therefore, we define an edge-wise
readout function using the mean aggregator. Thus, the review representation at
layer l is r(l)

u,i
= 1

|ru,i|
P

v2ru,i
X

(l)
v . To better capture the connectivities in the HG,

we propagate the initial embeddings through the convolutional layer L times and
aggregate the layers using the mean, leaving the study of other aggretators as
future work, and define the vector as ru,i=

P
L

l=0 ↵l r
(l)
u,i

, where ↵l=
1

L+1 .
Attention-Based Review Aggregation. We employ an attention-specific
user and item representation vector to capture the quality of the reviews written
by the user and about the item [9], defined as:

a⇤
i,u

= h
>ReLU(Wa(ru,ikqu) + b1) + b2 (2)

where Wa 2 Rd
0⇥2d transforms the review representation into the attention

space taking the quality of the user into account, h 2 Rd
0

is the attention
vector, b1 and b2 are learned biases, ReLU [34] is a non-linear activation function,
and k is the concatenation operation. We can calculate the user-specific review
attention au,i by substituting qu with qi. The aggregation for a user is illustrated
in Figure 2 under review aggregation. The current attention score is unbounded;
we normalize the attention weight w.r.t. all other reviews of the item using
softmax ai,u =

exp(a⇤
i,u)P

(u0,i)2R exp(a⇤
i,u0 )

. Given the attention mechanism, we calculate
the weighted mean of the item-specific review embeddings. Our method selects
the more “important” reviews for the item as ri =

P
(u,i)2R

ai,uru,i. As a single
attention kernel may not be sufficient to capture complex explanations, we learn
multiple kernels, taking the average embedding over all kernels’ final output.
Preference Computation. We note that our review aggregation module is
agnostic to the preference computation module (see Figure 2), i.e., our ar-
chitecture that learns to select explanations does not impose any restriction
on the module that predicts which item to recommend to the user. There-
fore, our architecture learns in parallel both to provide recommendations as
well as to explain them. Aggregating information across high-order connec-
tivity has been found to greatly increase performance for top-n recommen-
dation in the preference computation module [49,18,46,45]. To show the ef-
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fectiveness of representing the extracted aspects and opinions in a HG, we
adopt two preference computation modules: (i) using MF, as in NARRE [9]
and HRDR [27], allowing for direct comparison of performance, simply rep-
resenting users and items in a latent space X(0)

p 2 R|V|⇥d, s.t. a user u and
item i each have a unique row in X(0)

p , defined as eu and ei. (ii) using the
well-performing LightGCN [18], where users and items are represented as the
average embedding of neighbors, through multiple layers of GNN convolutions,
as: e(l)u =

P
i2Nu

1p
|Nu||Ni|

e
(l�1)
i

, e
(l)
i

=
P

u2Ni

1p
|Nu||Ni|

e
(l�1)
u , where e(0)

i
is

the item i’s row in the learned preference matrix X
(0)
p .

Combine and Predict. There are multiple ways of combining the review and
aggregation modules, such as adding them [9,27]. Yet, simply combining the
embeddings using addition may lead to subpar performance. We, therefore, in-
vestigate three different combination methods: (i) addition combines the pref-
erence and review embeddings using element-wise addition as Cadd(u) = eu+ru;
(ii) multiplication uses element-wise multiplication, (�), thereby capturing
the affinity between the two module representations as Cmul(u) = eu � ru; and
(iii) concatenation creates a vector of new dimension as it concatenates the
two embeddings as Ccat(u) = eukru. In this case, if the output embeddings are
of unequal size, then the larger embedding would have a higher weight in the
final prediction step. Yet, this method is also the only one proposed here that
handles the case where preference and review modules produce output embed-
dings of unequal size. As such, using any of the combination functions C, we can
compute the embeddings of the users and items as: e⇤

u
= C(u), e

⇤
i
= C(i).

Prediction. Our framework is agnostic to the prediction method. We here de-
scribe to possibilitites. The learned similarity, fNARRE(u, i) = Wp(e⇤u � e

⇤
i
) +

bu + bi + µ [9], is a linear transformation of the affinity between the users and
items representation, where Wp 2 R1⇥d

0
and bu, bi, and µ denotes user, item and

global biases, respectively. Here, the weight matrix Wp is able to select which
features are most important for ranking user and item affinities. The other pro-
posed prediction method is the inner product (·) between a user and an item,
which in certain settings outperform the learned [37], as fdot(u, i) = e

⇤
u
· e

⇤
i
.

Optimization. We use Bayesian Personalized Ranking (BPR) as the collabora-
tive loss function [36] as LCF =

P
(u,i,j)2{(u,i,j)|Iu,i=1,Iu,j=0} �ln� (ŷu,i � ŷu,j),

item i is preferred over item j; � is the sigmoid function; and ŷu,i is the out-
put of either fNARRE or fdot. To accommodate the quantitative explainabi-
lity reasoning, we develop an explainability-specific loss function. Intuitively, if
a user mentions some aspects and opinions about an item, we assume them
to be important. We, therefore, propose a TransR [26]-like similarity function
augmented for AOS triple as fTR(u, i, a, o, s) =

�
W

1
s
(e⇤

u
ke

⇤
i
) + s

�>
W

2
s
(eakeo),

where W
1
s
,W2

s
2 R

d
00⇥d

0
are sentiment-specific weight matrices, such that we

can rank aspect and opinion of both positive and negative sentiment. Here ea

and eo are the average node representations of the aspect and opinion, com-
puted using the HG convolutions calculated (see Figure 2); and s 2 R

d
00

is
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a sentiment-specific relation vector. We maximizes the similarity using BPR,
minimizing:

LAOS =
X

(u,i,a,o,s,ā,ō,s̄)2B

�ln� (fTR(u, i, a, o, s)� fTR(u, i, ā, ō, s̄)) (3)

where B={(u, i, a, o, s, ā, ō, s̄)| Iu,i=1, (a, o, s)2ru,i, (ā, ō, s̄)/2ru,i}.
The final loss function includes ⇥, the set of all learnable parameters, includ-

ing X
(0) and X

(0)
p as L = LCF +�LAOS +�k⇥k

2
2, where � and � are parameters

for tuning the LAOS loss and L2 regalurization, respectively. When training, we
exclude the interactions we are ranking from the preference module and the ac-
companying reviews from the review aggregation module, ensuring the method
does not have a bias towards already seen items. For each excluded review, we
sample an AOS triple for the explainability loss such that we can optimize both
the preference and review aggregation modules, concurrently. In practice, we op-
timize using AdamW with decoupled weight decay. Weight decay is equivalent to
L2 when using SGD, but L2 does not scale properly with adaptive gradients [29].
Generating Explanations. Our method produces explanations that can then
be employed at three different levels (see Figure 1): (i) at review level, selecting a
review that can provide information that is user specific; (ii) at word level, high-
lighting important aspects and opinions; and (iii) at graph level, explanations
are paths connecting the user to the item via aspects-opinion pairs and items
in other reviews. The graph review level, allows a user to quickly understand
why an item is recommended, by giving an easy-to-understand connection be-
tween previous purchases and the item. However, this view lacks the context of
the extracted phrases, which is often necessary for purchase decisions. Thus, the
underlying review text can be used for context, and the extracted phrase-level
words are highlighted to draw attention to important areas. Yet, the reviews
selected in previous works [9,27] are not user-specific, meaning the same review
is given to all users when selecting an item. Such review selection is suboptimal,
as it does not consider the user’s preferences. Instead, we propose a path-based
restriction of the reviews we can use as explanations for an item towards a user.

In Figure 1, there are multiple paths from the user to the item. However,
connecting on the opinion word is most likely uninformative, as reviews may
use great in very different contexts. Instead, we define the matching criterion as
matching on aspects and opinion pairs, creating a path from ru1,i1 to ru2,i3 , via
the pair (quality, great). While in Figure 1, there is a direct link between a user
review and the selected item review, longer paths are possible. In such cases,
paths such as i!u or i!v!u are possible, where v is the connecting user and
! indicates a connection through an aspect-opinion pair. We limit to a max of
one intermediary user for reduced graph sizes. Intuitively, if a user writes about
similar aspects and we have learned that these are important for the respective
user, their reviews about a possible recommendation might also be important.
The undirected labeled graph gm used to compute the explanation contains only
weighted paths from user to item satisfying the connectivity constraints. We
define the graph as gm = {{u, ru,i, {a, o}}|ru,i 2 R, (a, o, s) 2 ru,i}.
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Table 2. Data statistics
Dataset #User #Product #Aspect #Opinion #Review
Computer 19,818 8,431 5,046 4,017 92,761
Camera 4,770 2,612 2,182 2,218 21,122

Toy 2,672 1,919 780 1,186 16,070
Cellphone 2,340 1,350 817 1,196 11,134

We are interested in limiting the possible reviews to a single review for re-
view explanations and to a set of reviews for graph-recommendation. Based on
the graph constructed either directly between a user and an item or through
multiple hops, we will use the user’s attention on reviews along the path, except
for the last hop, where we use the item’s attention, to select the best path. Intu-
itively, we are interested in knowing how important users find the reviews, and
by extension, the aspects and opinions, but also which reviews are important for
the item we are recommending. For example, in Figure 1, we could select either
the review ru1,i2!ru5,i3 or ru1,i1!ru2,i3 . If we greedily select starting from the
user, we would select the path ru1,i2!ru5,i3 , leading to the review level explana-
tion of ru5,i3 , while greedily selecting, starting from the item would lead to the
same selection as shown in Figure 1. Starting from the user, would create more
diverse, user-specific explanations but could disregard the attention score on the
item side, while greedily selecting reviews from the item side, could lead to less
diversity. Based on these limitations, we propose three selection methods which
we will study in the experimental section: (i) greedily selecting reviews, starting
from the user until we find the item; (ii) greedily selecting reviews, starting from
the item until we find the user; and (iii) finding the path with maximum weight.
Complexity analysis. HypAR is bounded by the HG convolutions. Thus, to
estimate the time complexity of our method, it is sufficient to study the complex-
ity of the HGNN. The convolutions can be described as four operations applied
sequentially: (i) feature transformation, with complexity O(|V|d2); (ii) two node
degree normalizations, of O(2|V|3); (iii) transformations from nodes to edges
and back again, with O(2|V||R|

2); and (iv) neighborhood aggregation, being
O(|V|2d). Of these, the node to edge transformations are of highest complexity,
as |R|�|V|�d. The complexity of the HGNN is O(|V||R|

2); however, this naïvely
assumes that we utilize dense Matrix Multiplication (MM) instead of Sparse MM
(SPMM). Using SPMM we reduce the complexity of (iii) to O(kHk1|R|), which
can be rewritten using the average number of edges Ea, as O(|V|Ea|R|). In most
cases Ea⌧|V|, greatly reducing the complexity. Furthermore, as operations (ii)
and (iii) are computed once they have no influence on time complexity during
forward propagation, and HypAR is thus bounded by operation (iv).

4 Experiments

The experimental objectives revolve around how our HG-based model compare
to state-of-the-art models at providing high-quality recommendations; expla-
nation quality, whether our model is better suited for providing high-quality
explanations; and how well the model upholds our explanation objectives.
Datasets. We utilize data based on the four public datasets of 2014 Amazon
review dataset [32]: Computer and Accessories (Computer), Camera and Photo
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(Camera), Toys and Games (Toy), and Cell Phones and Accessories (Cellphone),
for which aspects, opinions and sentiments have been extracted [23]. However,
due to space restrictions, we only show our explainability experiments on the
smallest and largest datasets, being Cellphone and Computer, respectively, hav-
ing similar results on the other datasets withheld. We filter users and items with
fewer than five ratings and split the datasets with the ratio 0.6:0.2:0.2, for each
user based on time. Furthermore, we use a porter-stemmed version of all aspects
and opinions by applying Gensim’s text preprocessor4.
Baselines. As shown in Table 1, there are two major categories of explanations,
either based on reviews or paths. We have selected NARRE [9] and HRDR [27]
for the first group of explainable recommenders. Both use Convolutional Neu-
ral Networks on word vectors to represent a review, with attention mechanisms
for review selection as explanation. The most prominent method using GNN for
recommendation that also produces some form of explanation exploiting connec-
tions in the graphs is KGAT [49]. KGAT utilizes TransR [26] to learn weights
between entities in a KG. For word level, we use TriRank [17], using a tripartite
graph of user, items, and aspects for ranking smoothing. We further compare
to MF [36] and LightGCN [18], as we model our preference module after them.
We have implemented all methods in the Cornac [40] framework as it supports
multi-modal information, such as aspects and reviews5.
Evaluation Metrics. For each user in the test set, we rank all items not inter-
acted with in the train and validation sets [49,18,50]. To evaluate the ranking
quality, we measure AUC [15], MAP [5], and NDCG [21]. To evaluate the meth-
ods’ explainability, we opt for three different methodologies: (i) compare the
selected review with the review written by the user; (ii) select a graph (or path)
as the explanation and compare it to the ground truth graph constructed from
the user’s review; and (iii) given a set of aspects and opinions assumed to de-
scribe the user’s preferences, we study the quality of the approximate ranking
obtained by ranking higher items matching them (described in Section 3).

To compare a selected review with a ground truth review, we adopt five dif-
ferent sentence similarity metrics for evaluation: BERTScore [62], being based on
textual embedding similarities; and BLEU [57], METEOR with alpha=0.9 [3],
and ROUGE [25] which are based on n-gram overlaps. For graph overlap, we use
Precision [43], Recall [43], F1-measure, overlap-coefficient [30], and Diversity [1];
measuring the methods’ ability to retrieve correct and unique aspects and opin-
ions. For fairness, we allow KGAT to sample an unlimited number of paths until
it has chosen (close to) as many nodes as HypAR to study KGAT’s ability to
select a diverse and relevant subset of nodes.
Recommendation Performance. The results are shown in Table 3, with the
default HypAR using LightGCN as the preference module, concatenation as the
combiner, and dot product for prediction. Our experiments show concatena-
tion to outperform addition and multiplication (not detailed here for brevity).

4 https://radimrehurek.com/gensim/parsing/preprocessing.html#gensim.parsing.preprocessing.stem_text
5 All methods are available at https://github.com/PreferredAI/cornac

https://radimrehurek.com/gensim/parsing/preprocessing.html#gensim.parsing.preprocessing.stem_text
https://github.com/PreferredAI/cornac
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Table 3. Recommendation performance on different datasets. Bold is the best per-
forming and underline is the second best.

Method Cellphone
AUC MAP NDCG

MostPop 0.5370 0.0314 0.1709
BPR-MF [36] 0.5662 0.0317 0.1711
NARRE [9] 0.5123 0.0077 0.1385
HRDR [27] 0.5317 0.0206 0.1541
HypAR-MF 0.6440 0.0334 0.1789
HypAR-MFNARRE 0.6422 0.0272 0.1732
TriRank [17] 0.6965 0.0248 0.1769
NGCF [50] 0.7430 0.0365 0.1900
KGAT [49] 0.7295 0.0500 0.2017
LightGCN [18] 0.7448 0.0507 0.2037
HypAR 0.7533 0.0517 0.2054
HypAR (� = .1) 0.7515 0.0507 0.2045
HypARNARRE 0.7293 0.0501 0.2029

Toy
AUC MAP NDCG
0.4412 0.0047 0.1338
0.4729 0.0050 0.1337
0.5135 0.0053 0.1357
0.4964 0.0053 0.1346

0.6462 0.0128 0.1544
0.6302 0.0116 0.1524
0.6666 0.0136 0.1585
0.7138 0.0158 0.1622
0.6830 0.0155 0.1599
0.7129 0.0184 0.1648
0.7169 0.0199 0.1663

0.7172 0.0200 0.1665
0.6826 0.0201 0.1656

Camera
AUC MAP NDCG
0.5916 0.0171 0.1528
0.6190 0.0174 0.1527
0.4983 0.0030 0.1217
0.5088 0.0060 0.1272

0.6635 0.0177 0.1549
0.6314 0.0145 0.1484
0.6887 0.0117 0.1507
0.7122 0.0216 0.1631
0.6928 0.0202 0.1602
0.7294 0.0293 0.1741
0.7325 0.0286 0.1734

0.7348 0.0297 0.1747
0.7207 0.0278 0.1718

Computer
AUC MAP NDCG
0.6604 0.0148 0.1390
0.6785 0.0150 0.1390
0.5020 0.0011 0.1036
0.4522 0.0059 0.1120

0.6890 0.0124 0.1355
0.6684 0.0110 0.1330
0.7054 0.0048 0.1247
0.6978 0.0130 0.1358
0.7105 0.0113 0.1352
0.7181 0.0187 0.1458
0.7278 0.0194 0.1473
0.7280 0.0196 0.1471

0.7308 0.0191 0.1472

Table 4. The results of the review selection.

Method Cellphone
BERTScore BLEU METEOR ROUGEL

HRDR 0.8390 0.0143 0.0680 0.0943
NARRE 0.8408 0.0220 0.0920 0.1049
HypARi 0.8389 0.0291 0.1090 0.1082
HypARgi 0.8392 0.0360 0.1141 0.1141
HypARgu 0.8389 0.0295 0.1114 0.1085
HypARw 0.8389 0.0295 0.1106 0.1088
HypARgi(� = .05) 0.8396 0.0374 0.1152 0.1154
HypARgi(� = .1) 0.8391 0.0362 0.1143 0.1138
Improv % -0.15* 70.23* 25.19* 10.05*

Computer
BERTScore BLEU METEOR ROUGEL

0.8341 0.0106 0.0561 0.0793
0.8341 0.0070 0.0429 0.0727
0.8328 0.0250 0.0993 0.0968
0.8321 0.0282 0.0990 0.0993
0.8324 0.0258 0.1015 0.0971
0.8323 0.0259 0.1019 0.0969
0.8322 0.0283 0.0991 0.0993
0.8321 0.0283 0.0993 0.0991
-0.16* 165.87* 81.62* 25.24*

HypARe refers to the method with the explainability loss, HypARNARRE to
experiments with fNARRE , and HypAR-MF with MF as the preference module.

We outperform both review-level recommenders, NARRE and HRDR, with
both MF and LightGCN as preference modules, having up to 255% increase in
performance using MAP. Using high-order connections is crucial for recommen-
dation performance. While TriRank outperforms all non-graph-based methods,
yet HypAR, NGCF, KGAT, and LightGCN outperform this method on all met-
rics. Thus, as the number of users and items increases, so does the running time
and memory footprint, contrary to all other graph-based methods chosen here.

Of all methods, both LightGCN and HypAR consistently perform well across
datasets. However, LigthGCN cannot explain its recommendations, motivating
our model-agnostic explainability module, i.e., we aim to maintain the prediction

power of LigthGCN while also learning to explain its recommendations. We see
HypAR performing consistently better or similarly to LightGCN.
Explanation Quality. In Table 5, we have HypAR where gi, gu, w, i being the
selection strategies greedy user, greedy item, weighted, and naïve selection using
only item attention. Furthermore, � is the AOS loss weight. The experiments on
the quality of the explanations (Table 4) show that HypAR selects most often
reviews of higher quality than both NARRE and HRDR. We often see a statis-
tically significant increase in performance when using t-test over users (p-value
of 0.05). Using explainability loss (Equation 3), we have a general increase in
explainability performance but also recommendation. Given that our method
outperforms the two baselines without the path restriction methodology, indi-
cates that the HG structure is essential for the review explainablity. We perform
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Table 5. The results of the graph selection.

Method Cellphone
Div F1 OC Prec. Recall

KGAT 0.4851 0.1863 0.3610 0.1346 0.3598
HypARi 0.3167 0.2627 0.3420 0.2595 0.3050
HypARgi 0.5573 0.2893 0.5487 0.2110 0.5470
HypARgu 0.5672 0.2892 0.5469 0.2111 0.5452
HypARw 0.5702 0.2900 0.5483 0.2116 0.5465
HypARgi (� = .05) 0.5644 0.2916 0.5495 0.2136 0.5472
HypARgi (� = .1) 0.5568 0.2911 0.5527 0.2122 0.5508
Improv % 17.53 56.50* 53.08* 92.77* 53.08*

Computer
Div F1 OC Prec. Recall

0.4874 0.1612 0.3513 0.1141 0.3500
0.3163 0.2349 0.3183 0.2325 0.2829
0.5274 0.2417 0.5169 0.1733 0.5145
0.5634 0.2448 0.5081 0.1768 0.5056

0.5707 0.2451 0.5106 0.1767 0.5081
0.5271 0.2417 0.5171 0.1730 0.5149
0.5258 0.2421 0.5169 0.1735 0.5146
17.10 52.11* 47.21* 103.75* 47.10*

slightly worse with the BERTScore metric; however, BERTScore suffers from
the antonym embedding problem, where antonyms have similar embeddings due
to similar contextual information [39,13].

We are outperforming KGAT (Table 5) on all metrics with statistical sig-
nificance. KGAT selects a smaller subset of nodes, as seen with the diversity
metric, even when selecting as many nodes as HypAR. The nodes selected are
of less importance for the user, as KGAT only selects half as many relevant
nodes as HypAR, which can be extrapolated from its recall. We see the path se-
lection algorithm affect the performance; particularly, the performance between
diversity, precision, and recall. Which to use therefore depends on the specific
explainability scenario. When selecting a single review, we reduce the number of
selected nodes and thereby increasing the precision at the cost of diversity and
recall. Furthermore, in both explainability settings, using our path restriction
methodology increases performance over the naïve attention mechanism.
Explainability Criteria. We test our method using the two explainability
criteria defined in Section 3. Specifically, based on the top-5 recommended items
for each user, we find the explanation " of each item and all other items matching
the explanation ". We then conduct two studies comparing to: (i) a random
ordering of items and (ii) items ranked using a different explanation of similar
size. This evaluation works as a litmus test where we inspect the ability of the
explanation to carry some information about the user preference beyond the
specific item for which it was generated. For example, if we recommend item
i3 and we provide great quality instead of fast shutter as explanation, we would
expect then that items with great quality are, on average, preferred to items with
fast shutter. Any method not passing these criteria would not be explainable as
the explanations would be indistinguishable from random explanation. This test
is designed specifically to validate the explanation informativeness for set-based
techniques as ours. Thus, these metrics and the results are not comparable to
methods that select explanations based on other criteria, e.g., MostPop. On all
datasets, we see a statistically significant increase over both the random ordering
and the random explanation when using the average rank of the selected items.
For example, for Cellphone, we have an average rank (lower is better) of 543.8,
with random ordering having 674.5 and random explanation having 628.0 leading
to a p-value less than < 0.01. As such, our method is, firstly, able to select a
set of nodes that correlate to the actual ordering of items by our method, and
secondly, the set of selected items correlates with our method’s understanding
of the user’s preferences. Since our method outperforms the baselines, w.r.t.
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Fig. 3. Real example from the Cellphone dataset.

This works perfectly and
charges two devices as

expected. Needed dual
charger for ipad 4. Just
a touch larger than I had
hoped but not huge or bulky.

I would recommend this
dual charger. It is a great
small size.

We recommend
You wrote

ADS99W
8WMEXZ2

perfectly

touch

larger

charged great

charger

size
dual

small

A143LJ4
G2OPP7T

B00D6
4PN36

B007T
V88F2

the evaluation metrics in Table 4 and Table 5, and the explanations selected
correlate with the HypAR’s learned user preferences; we have strong evidence
that the graph selection strategy is sound.
Case study. We present here an illustrative case study (Figure 3) by randomly
selecting a user (A143LJ4G20PP7T) and providing an explanation for the highest-
ranked item (B00D64PN36). The extrapolated explanation would be that both
products are dual-chargers based on the intersection; however, B00D. . . has a
smaller size. This is due to the user’s displeasure of B007. . .’s larger size, which
makes B00D. . . likely preferable. As such, our method selects the relevant infor-
mation for the user, and this can then be adopted for word-level highlighting of
the parts of text in review of the recommended item.

5 Conclusion

In this work, we propose a novel model-agnostic review-based HG architecture
for explainable recommendation. Our new graph model, HypAR, is based on
review-induced hyperedges and illustrate its possible use cases. We demonstrate
both the recommendation abilities of our method and the power of its expla-
nations compared to existing review-based explanation methods. We show that
HypAR either improves or maintains the performance of the underlying recom-
mendation method we provide explanations for while improving the explanation
quality compared to state-of-the-art methods; concluding that more attention
is required for graph-based review explanations, as existing methods underper-
form. However, if the number of phrase-level sentences explodes, the graph
view may become indigestible. Future work could therefore focus on pruning
and highlighting the graph view for easy understanding and digestibility.
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