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ABSTRACT

In data lakes, one of the core challenges remains finding rele-

vant tables. We introduce the notion of semantic data lakes, i.e.,

repositories where datasets are linked to concepts and entities

described in a knowledge graph (KG). We formalize the problem

of semantic table search, i.e., retrieving tables containing informa-

tion semantically related to a given set of entities, and provide

the first formal definition of semantic relatedness of a dataset to

tuples of entities. Our solution offers the first general framework

to compute the semantic relevance of the contents of a table w.r.t.

entity tuples, as well as efficient algorithms (exploiting seman-

tic signals, such as entity types and embeddings) to scale the

semantic search to repositories with hundreds of thousands of

distinct tables. Our extensive experiments on both real-world and

synthetic benchmarks show that our approach is able to retrieve

more relevant tables (up to 5.4 times higher recall) in comparison

to existing methods while ensuring fast response times (up to 17

times faster with LSH).

1 INTRODUCTION

Data lakes are the state-of-the-art technology to collect het-

erogeneous datasets in large organizations in a flexible man-

ner [48]. However, the high level of complexity and diversity

in terms of data formats, schemas, and contents poses many

challenges [16, 59]
1
. This includes data discovery as used, for

instance, within data science workflows, where the task is to find

the “right” data to solve a given data science problem [15, 46].

For example, data scientists looking into analyzing a particular

phenomenon frequently need to identify all tables containing

relevant data. This requires focusing specifically on entity-centric

search, i.e., user queries that are composed of example entities of

interest [43, 47]. To support these and similar use cases, we need

to offer data discovery solutions that are able to track informa-

tion about entities, their relationships, and concepts of interest

across multiple tables and across the entire data lake. To tackle

this problem of finding the most relevant tables for a given set of

entities of interest, one can use (open or enterprise) knowledge

graphs (KGs) [50, 59, 60] as a key technology for modeling enti-

ties, relationships, and their occurrences in different datasets –

Figure 1a shows a simple example.

1
While data lakes can contain more than tables, e.g., JSON files, in this work, we

focus specifically on table repositories with no predefined schemas.
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Semantic relevance search consists of ranking a set of tables

by semantic relevance given an example set of tuples contain-

ing entities as input. This is different from keyword search, i.e.,

where tables are retrieved based only on the syntactic presence of

specific keywords. Specifically, a data discovery system should be

able to complement exact (keyword) matching by also returning

tables that are semantically relevant to the query without neces-

sarily containing any exact matches. This is also different from

query-by-table approaches that attempt to find relevant or union-

able/joinable tables with a possibly large query table [49, 58, 71].

Perhaps more relevant are query-by-example (QBE) or query-by-

target approaches which do not require large input tables, rather

only a few example tuples [9, 22, 31, 52, 65, 68, 69]. These ap-

proaches do not leverage the full knowledge graph as we propose

to do. Representation learning-based table search methods [61]

are also not suitable as they are not entity centric and thus are

limited in their understanding of the semantics of the entities in

a table. Figure 2 illustrates the relationships between the output

of all existing methods, and shows that tuple search by semantic

relevance is a generalization that includes subsets of other table

search task outputs.

Example 1.1. Consider a data lakeD storing tables {𝑇 1,𝑇 2,𝑇 3,

𝑇4,𝑇5} (Figure 1b) and their links to a KG (Figure 1a). Assume

a betting company is analyzing baseball teams and players to

cross-reference their performance. Given some baseball teams

of interest, an initial query would express an interest in baseball

players from these baseball teams, as in Figure 1c, to retrieve

tables to cross-reference their results. A search engine over D
then retrieves and ranks tables by semantic relevance that record

similar data w.r.t. the query. These tables describe baseball teams

or players, as well as player transfers between teams and results

in different games as context. The engine should also recognize

when information is less relevant or likely irrelevant, e.g., a list

of teams and player names but from different sports, even if the

teams are from the same cities as those in the query, is less rele-

vant. Figure 1b contains tables relevant to the query in Figure 1c.

Note that in exact matching, only tables containing keyword

matches are returned (𝑇3, 𝑇4, and 𝑇5). Furthermore, note that

the tables may not be unionable or joinable with the query.

Despite the importance of this data discovery task, existing

solutions for finding tables are mostly content-based [39, 67, 71]

or metadata-based [10, 28, 32, 68] (see Section 3 for more details).

In this paper, we propose a new way of searching ta-

bles in data lakes: Our approach leverages knowledge graphs,

which are now ubiquitous, especially within companies in the

form of Enterprise Knowledge graphs (EKG) [35, 50, 59, 60]. We

focus on semantic data lakes, which augment a data lake with

links between the contents of each dataset and the concepts in

a KG. Specifically, we identify entity mentions in the datasets
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Figure 2: Relationship between table search methods’ output

and link only those mentions to the entities in the KG. Hence,

our approach considers KGs with only partial coverage over a data

lake, and we also show that we can retrieve relevant results even

with low entity linking coverage in a purely content-based manner,

making it applicable in data lakes with incomplete or inconsistent

metadata. Furthermore, our approach is useful in data discovery

and exploration, where the user, for example, wants to figure out

what data is available, even with small query tables as input.

Contributions.We formalize the components of a semantic data

lake and the task of table search in semantic data lakes (Section 2),

and discuss the gap in the state of the art (Section 3). We describe

a system called Thetis having the following contributions:

• To address the data discovery problem in semantic data lakes,

we introduce the first formalization of the table search task as

an example-driven query paradigm and we propose a complete

axiomatization of the semantic table relevance score to derive a

principled content-based dataset discovery solution (Section 4);

• We present a search framework to perform semantic table

search by proposing two concrete instantiations of a relevance

score, exploiting both taxonomic information as well as learned

semantic similarities as entity embeddings (Section 5);

• To handle scalability, we present a suite of optimizations to

our table search algorithm that exploits variations of locality-

sensitive hashing (LSH) to pre-filter irrelevant tables in the

search space (Section 6);

• We evaluate our semantic search algorithm against a novel,

real-world benchmark [40] of two corpora of Wikipedia ta-

bles [6, 8] to demonstrate the ability of our approach to support

information discovery tasks that go beyond traditional search

methods (Section 7). Furthermore, we evaluate the scalability

of our algorithm over GitTables [33] containing 864,478 tables,

two benchmarks created from Wikipedia Tables [40], and a

synthetic corpus of more than 1.7M tables. We show that our

semantic table search algorithm efficiently finds relevant tables

that complement keyword-based search.

2 PROBLEM FORMULATION

We present three core concepts: data lakes, knowledge graphs,

and semantic data lakes, i.e., data lakes linked to a reference

knowledge graph. Furthermore, we define semantic table search.

2.1 Data Lake

We define a data lakeD as a set of data files each in the form of a

table, i.e.,D={𝑇1,𝑇2, ...,𝑇𝑛} (see Figure 1b). Each table𝑇𝑖∈D con-

tains a set of tuples 𝑇𝑖={𝑡1, 𝑡2, ..., 𝑡𝑘 } (presented as rows) sharing

the same schema, i.e., described by the same set of attributes A𝑖 .

Each attribute of a tuple 𝑡 𝑗∈𝑇𝑖 is assigned a value from an

infinite countable set of valuesV (containing both numbers and

strings, plus a special value ⊥ for the null value). For instance,

considering 𝑡1 shown as the first row in table 𝑇2 (Figure 1b), the

value of the attribute Player for 𝑡1 is “Tony Giarratano”. Finally,
for simplicity, a specific attribute value in a tuple is also called

a cell and identified by the attribute (the column) and the tuple

identifier (the row).

In data lakes, it is commonly assumed that no information is

given w.r.t. referential constraint, such as foreign keys, between

attributes in two distinct tables [48]. Therefore, there is no explicit

semantic connection among values contained in distinct tables [48].

2.2 Knowledge Graphs

Knowledge Graphs (KGs) may model heterogeneous information

in many domains [41, 51, 59, 60, 60]. A KG is a labeled directed

graph𝐺 = ⟨N , E, 𝜆⟩ [18, 42, 45, 50], where entities, concepts, and
their attributes are modeled as nodes N , and the relationships

among them are modeled as edges E. Moreover, nodes and edges

are usually annotated with a set of labels, i.e., human readable

literals L by a mapping function 𝜆 : N ∪ E ↦→ L.
Note that a KG describes in a unified model both the entities of

interest (e.g., people) along with relevant attributes (e.g., age), as

well as their categorizations (e.g., types of profession, also called a



taxonomy). This allows for the modeling of complex connections

between many different types, entities, and concepts, e.g., a multi-

step path connecting a baseball player from one baseball team to

another player in another team.

2.3 Semantic Data Lake

There have been some proposals to integrate the tables in a data

lake to match the structure and content of reference KGs [3, 20,

23, 59]. Unfortunately, these solutions require both entity and

schema alignment, i.e., a reliable mapping between the schema

of the KG and the schema of each table in the data lake. To date,

existing solutions to perform this alignment automatically are

still in their infancy [67], and thus obtaining a semantic data lake

that applies this type of mapping requires a substantial manual

effort [60]. On the other hand, entity linking, i.e., the task of

matching entity mentions in tables to entities in KGs, is an easier

task with multiple effective automatic solutions [6, 41, 55, 64].

Hence, to allow effective data discovery, without the need for

costly and error-prone schema alignment techniques, we propose

to exploit only entity linking between values in tables and entities

in KGs, e.g., values like Tony Giarratano in 𝑇 2 is linked to entity

T. Giarratano in a KG.

The resulting integration of a data lake via a KG by only entity

linking constitutes a novel definition of a Semantic Data Lake:

Definition 2.1 (Semantic Data Lake). A Semantic Data Lake

is defined as (1) a data lake repository D={𝑇1,𝑇2, ...,𝑇𝑛}, (2) a
knowledge graph 𝐺 = ⟨N , E, 𝜆⟩, and a partial mapping function

Φ : D×A×V↦→N and its inverse to the power set of data lake

values Φ−1
: N↦→P(D×A×V).

In particular, we note that the two mapping functions map

only some of the values and entities in the KG and the data lake

tables. This allows our system to be robust and flexible even in the

case that the KG does not describe all the information contained

in the data lake, e.g., the KG may not contain some entities that

appear in some of the tables. This is particularly important since

requiring complete and exact mapping would greatly hinder the

ingestion of new tables in a dynamic data lake.

2.4 Problem Definition

We define semantic table search as the task of retrieving a ranked

list of tables that are semantically relevant to a given input query.

We assume as input a query consisting of a set of entity tuples

𝑄 :{𝑡1, 𝑡2, . . . ,𝑡𝑘 } where each entity tuple 𝑡𝑖 is a list of entities

from 𝐺 (the KG) of the form ⟨𝑒1, 𝑒2, . . . , 𝑒𝑛⟩, with 𝑒𝑖∈N . Query

entities not in the KG are ignored. The semantic relevance score

(SemRel𝐺 (𝑄,𝑇 )∈[0, 1]), given a user query𝑄 , assigns a relevance

score to each table𝑇 in the data lake depending on the relatedness

(computed within 𝐺 , between the entities in the query and the

entities in the table). For instance, such a function should be

able to provide a higher relevance score to tables describing

baseball players than to tables describing volleyball players when

comparing them to the query entity Ron Santo (Figure 1b).

Problem 2.2 (Semantic Table Search). Given a semantic

data lake ⟨D,𝐺,Φ⟩, and a set of entity tuples 𝑄 as input, extract

from D a ranked list of relevant tables describing entities seman-

tically related to 𝑄 according to their semantic relevance score

SemRel𝐺 (𝑄,𝑇 ), s.t., ∀𝑇∈D: SemRel𝐺 (𝑄,𝑇 )>0.

Note that, given a query 𝑄 and a table 𝑇 , if the aggregate

relevance score SemRel(𝑄,𝑇 ) (in the following, SemRel for sim-

plicity) is zero, then we conclude the specific table is irrelevant

and should not be returned. It is possible that returning all ta-

bles where SemRel(𝑄,𝑇 )>0 may result in a set that is too large.

Hence, without loss of generality, we return the top-𝑘 tables ac-

cording to SemRel. More specifically, we tackle the challenge

of defining an appropriate SemRel relevance score and devising

efficient algorithms to establish tables with the highest semantic

relevance score without computing scores for all tables in the

data lake at runtime.

3 RELATEDWORK

We consider the literature on exploratory settings where an analyst

needs to retrieve datasets potentially relevant to their project

from a data lake. Here, we focus on example-based approaches,

in which the user circumvents query languages using examples

of the information they require as input [43]. We distinguish

between (a) matching where the content of the target datasets

matches the content of the query; (b) augmenting, where the

target datasets provide additional attributes for the query tu-

ples or additional tuples with the same semantics; and (c) related

where the target data provides additional contextual informa-

tion w.r.t. the query. Among existing data discovery systems, we

identify semantic data lakes as an unexplored area, and scalable

semantic-aware search has not yet received sufficient attention.

3.1 Table Search in Data Lakes

Often, table search methods are based on standard informa-

tion retrieval techniques. The most common approach exploits

keyword search [4, 10, 12, 13, 56], where the user query is

matched against captions, file names, and metadata annota-

tions, an approach also used in the Google Dataset Search por-

tal [4, 10]. Unfortunately, relying on high-quality descriptive meta-

data represents a restrictive assumption. Other approaches per-

form query-by-table, where an example table is given as the

input query [9, 14, 17, 49, 52, 53, 57, 71]. With example tables as

queries, the table search task becomes a matter of relevance that

may be expressed in terms of (semantic) overlap in their contents.

For instance, approaches like LSH Ensemble [71], JOSIE [70],

MATE [24], and BareTQL [52] measure the overlap between col-

umn values as one of many signals, where higher overlap signifies

a higher relevance.

A related task is dataset augmentation, which aims to add

features, labels, or instances to a dataset [69]. ARDA [17] is a

proposed framework to evaluate the quality of the information

obtained through augmentation. Hence, given a specific predic-

tive model, it takes a dataset and a data repository as input and

outputs an augmented dataset such that training the predictive

model on this augmented dataset results in improved perfor-

mance. However, these approaches focus mainly on data lake val-

ues and only tangentially take into account external information

w.r.t. the semantics of the values mostly in terms of data types.

To account for heterogeneity in the representation of values,

many approaches [27, 36, 49, 52] go beyond simple value overlap

and relevance between tables using KG mappings and value,

tuple, or column embeddings. Some table search approaches [36,

49] also use some taxonomic information (WebIsA, YAGO, and

Freebase types) and KG properties as reference knowledge to

determine the relatedness of two sets of entities appearing in table

columns or the relatedness of two relationships (pair of columns).

For web tables, some machine learning approaches [19, 67, 68]

propose to exploit contextual information extracted from the web

pages in which they appear, e.g., text and heading in the page to



Table 1: Dataset search systems features: in terms of fulfilled (✔), partial (*), and missing (✗) properties to support semantic table search

Output Tables Searching technique

Method Query Type Augmenting Matching Related Metadata Content Semantic

Aurum [27] Keyword ✔ ✔ ✔ ✔ ✔ (*)

Auctus [13] Keyword ✔ ✔ ✗ ✔ ✗ ✗

BM25 [56] Keyword ✗ ✔ ✗ (*) ✔ ✗

Google Dataset Search [4, 10] Keyword ✗ ✔ ✗ ✔ ✗ ✗

OCTOPUS [12] Keyword ✗ ✔ ✗ ✔ ✔ ✗

ARDA [17] Generic table ✔ ✗ ✗ ✗ ✔ ✗

BareTQL [52] Generic table ✔ ✔ ✔ ✔ ✔ ✗

D
3
L [9] Generic table ✔ ✔ (*) ✔ ✔ (*)

DICE [27, 53] Generic table ✔ ✔ ✔ ✔ ✔ ✗

JOSIE [70] Generic table ✔ ✔ ✗ ✗ ✔ ✗

JUNEAU [69] Generic table ✔ ✗ (*) ✔ ✔ ✗

MATE [24] Generic table ✔ ✗ ✔ ✗ ✔ ✗

Proximity [2] Generic table ✗ ✔ ✗ ✔ ✔ ✗

QCR [57] Generic table ✔ ✔ ✗ ✗ ✔ ✗

SANTOS [36] Generic table ✔ ✔ (*) ✗ ✔ (*)

SEMPROP [14] Generic table ✔ ✔ ✔ ✔ ✔ (*)

Starmie [25] Generic table ✔ ✔ (*) ✗ ✔ (*)

Table Union [49] Generic table ✔ ✔ ✗ ✗ ✔ ✗

DS4DM/RapidMiner [30, 37, 38] Entity table ✔ ✔ ✗ ✔ ✔ ✗

S3D [29] Entity table ✔ ✔ ✗ ✔ ✔ (*)

TURL [19] Generic table ✔ ✗ ✗ ✗ ✔ ✗

Thetis (ours) Entity Tuples ✔ ✔ ✔ ✗ ✔ ✔

obtain a better high-level understanding of the contents of a table.

These approaches heavily rely on this contextual information and

on training complex machine learning models. Moreover, some

require the query to be compared to all instances in the repository,

making them inapplicable in a scalable data lake system.

TURL [19] is a representation learning approach designed for

table understanding through vectorized input queries and data

lake tables. It was not directly designed for table search, but it

can be employed for this task by computing vector similarities.

However, tables must be large enough to achieve high-quality

vector representations, limiting the effectiveness of small queries.

Many systems aim to find tables that are joinable with a query

table [9, 12, 24, 57, 70, 71]. This task requires ranking candidate

tables based on the syntactic overlap in the content of one ormore

columns or rows but does not account for any notion of semantic

similarity or topical relevance. Others do table union search [9, 25,

36, 49] which does not necessarily require any syntactic overlap

and can exploit semantic similarity in the data or in some cases

themetadata [9] to establishwhen two columns describe the same

domain of values. However, for table union search, the ranking

is designed to favor tables that are more structurally similar

having more columns and more relationships (or context) that

are shared with the query table. In semantic search, however, we

are not only interested in tables that union with our query table

(where the goal is to find additional tuples that expand a query

table by matching their schema). Hence, our semantic relevance

considers the strength of the semantic similarity rather than

structural similarity (having more columns or relationships in

common). Another approach for related table search also exploits

contextual data derived by static analysis of the usage of specific

tables in different programs (e.g., python notebooks) [69]. Hence,

such approaches point towards the importance of integrating

contextual information in the search task, but are limited in the

type of contextual information they adopt.

To best exploit the taxonomic information present in KGs,

some approaches explicitly assume that the data lake contains

only tables describing a set of entities (entity tables), so that

one column contains the entity identifiers and the remaining

columns are all interpreted as attributes of those entities [58].

Using this paradigm, systems like RapidMiner [30, 37, 38] and

S3D [29] can first perform a form of schema matching between

the columns of the table and the schema of the KG, and then use

this information to propose set of attributes that can explain joins

with other tables. Yet, these methods either do not fully exploit these

semantic resources, e.g., the structure and connectivity of the KGs,

or limit themselves to explicit one-hop-matching with attributes

expressed in the table.

In our work, we establish a new entity-centric semantic re-

latedness measure for generic entity tuples that do not require

matching any structural condition between tables (that they be

joinable or unionable). We summarize the features of existing

approaches in Table 1. Our method is the only one that accepts

generic entity tuples that considers both content and semantic

relationships to produce a relevance-based ranking of tables that

goes beyond structural matching retrieving also tables that con-

tain related entities without the need for any schema matching

or accurate metadata.

3.2 Semantic Data Lakes

Thanks to their flexibility and expressiveness, KGs have been

adopted in many organizations [35, 50]. A recent trend is that

of exploiting KGs in data lakes [3, 5, 23, 32, 44, 59]. This leads to

sophisticated approaches where the schema and contents of the

datasets in a data lake are linked to the entities and relationships

contained in a knowledge graph. Hence, in these approaches,

every piece of information is virtually mapped to statements in

the KG. This allows heterogeneous data to be accessed uniformly

through semantic queries (usually SPARQL) via schema mapping

and integration. While this approach achieves a high level of data



integration, it requires extensive manual mapping as well as data

cleaning efforts [60], which is in contrast with the principle that

a data lake should allow effortless addition of new datasets.

In contrast, our proposal is more flexible.We propose to identify

within each data lake dataset all mentions of entities from a

reference KG, and hence identify which pieces of the data contain

those mentions. This linking is performed automatically [6, 55].

Our approach does not require mapping the complete dataset

schema to KG relationships. Thus, we integrate a data lake with

a KG to obtain a Semantic Data Lake without manual curation.

Contrary to approaches like S3D [29], we allow for a wide

range of semantic similarities between entities, and we integrate

them transparently in a principled scoring function, while still

providing a fast search algorithm. This also sets apart our pro-

posal from approaches for web tables, like STR [66], where em-

beddings of tables are aggregated by complex machine learning

models requiring the computation of many-to-many matches in

a brute-force fashion.

3.3 Graph Relevance

Our system infers table relevance from a given entity relevance

metric provided, therefore it is explicitly designed to accommodate

any relevance measures that takes advantage of any information

encoded in the KG. There are many approaches that compute the

relevance within a graph depending on the task. Here, we focus

on semantic similarity metrics that can be converted to vector

operators, allowing for fast indexing and search. Hence, instanti-

ations of relevance measures can exploit entity attributes, such as

the sets of entity types and predicates, or vector representation

of entity embeddings.

We focus on the similarities that are most widely adopted:

similarity of types and learned entity similarity. The former ranks

entities that share similar types higher, the second extracts a

learned vector representation of all entities so that entities can

be compared in a learned high-dimensional space, also called an

entity embedding. Thus, we compare entities based on the Jaccard

similarity of their types [63] as well as the cosine similarity of

their embeddings [54]. In this paper, we experiment with Jaccard

of entity types and RDF2Vec embeddings constructed on the

entire KG structure.

4 SEMANTIC TABLE SEARCH

We formalize the semantic relevance of a table given the semantic

relevance score for entities and provide an axiomatization of the

properties that a semantic relevance score should satisfy.

4.1 Aggregating Semantic Relevance

The task of semantic table search relies on the definition of a se-

mantic relevance score, SemRel(𝑄,𝑇 ), between a query 𝑄 and a

table𝑇 . The query is composed of one or more entity tuples, and

the table is composed of one or more rows containing entity men-

tions. Since the relevance score is measured through 𝐺 , given a

table row,we only consider the entitymentions in it, i.e., extracted

by the mapping function Φ (see Definition 2.1). Therefore, rows

in a table are also treated as entity tuples. Consequently, to define

SemRel, we need to first define a semantic relevance score between

pairs of entity tuples 𝑡𝑖 , 𝑡 𝑗∈P(N). Given the set of all possible

tuples as the set P(N), i.e, the set of all the subsets of arbitrary
size of nodes N from the graph G, we require the instantiation

of a semantic relevance function SemRel:P(N)×P(N)↦→[0, 1].
For instance, given tuples 𝑡1:⟨Mitch Stetter, Milwaukee Brewers⟩,

𝑡2:⟨Ron Santo, Chicago Cubs⟩, and 𝑡3:⟨M. Streep, Actor⟩, this
function should be able to return a higher relevance score for

the pair (𝑡1, 𝑡2) than for the pair (𝑡1, 𝑡3). Note also that, since two
tuples can be of different sizes, i.e., contain a different number

of entities, SemRel may be asymmetric. Nonetheless, for consis-

tency, given the tuples 𝑡1 and 𝑡2, with 𝑡2⊂𝑡1 and |𝑡2 |< |𝑡1 |, it must

always hold that SemRel(𝑡1, 𝑡2)≤SemRel(𝑡2, 𝑡1). As an example,

given the entity tuples 𝑡1:⟨Mitch Stetter, Milwaukee Brewers⟩
and 𝑡2:⟨Chicago Cubs⟩, when 𝑡1 is considered as a query, we want
the relevance score to signal that 𝑡2 only partially matches the

type of information mentioned by 𝑡1, on the other hand, when 𝑡2
is considered as a query, 𝑡1 may be considered a perfect match.

It follows that, to define the semantic relevance between two

entity tuples 𝑡1, 𝑡2, SemRel needs to compare each entity in 𝑡1
with each entity in 𝑡2, e.g., to recognize that both tuples men-

tion companies. Therefore, we say that the concept of semantic

relevance between tuples relies on the notion of semantic simi-

larity between any two entities in 𝐺 . Consider for instance the

simplest case where we compare two tuples each containing just

one entity, i.e., 𝑡𝑖 :⟨𝑒𝑖 ⟩ and 𝑡 𝑗 :⟨𝑒 𝑗 ⟩. Here, we naturally consider

that the highest relevance score is necessarily that of an entity

compared to itself, while for non-identical entities, we assume

that through 𝐺 it is possible to determine how similar is the

semantic role in the database played by two entities. Given a

query tuple 𝑡𝑄 , a target tuple 𝑡𝑇 is relevant if for every entity in

𝑡𝑄 it contains exactly that entity or an entity that is semantically

similar to that. Therefore, we require the definition of the concept

of semantic similarity score 𝜎 :N×N↦→[0, 1], with 𝜎 (𝑒, 𝑒)=1. The

semantic similarity score between pairs of entities should satisfy

all properties of a metric. In the next section (Section 4.2), we

formalize the defining characteristics of such relevance score and

then how SemRel relates to 𝜎 .

Finally, given the semantic relevance score defined between

pairs of tuples, we define the SemRel score between a query 𝑄

and a table𝑇 as an aggregate score of the combined relevance for

each tuple in the query, 𝑡𝑖∈𝑄 , and each tuple in the target table,

𝑡 𝑗∈𝑇 , this is required since we need to compute a single table

score allowing ranking of the tables to satisfy Problem 2.2. While

there can be different instantiations for SemRel – and more can

be studied in the future – we study the final score either as the

average of the score within each tuple-to-tuple comparison or as

the average of the best match between query tuples and tuples

in the table. We show in our experimental evaluation (Section 7)

how the second interpretation leads to better results, so we use:

SemRel𝑀𝐴𝑋 (𝑄,𝑇 ):
∑
𝑡𝑖 ∈𝑄 max𝑡 𝑗 ∈𝑇 SemRel(𝑡𝑖 , 𝑡 𝑗 )

|𝑄 | (1)

4.2 Axiomatization of Relevance

In the previous section, we described how the problem of seman-

tic table search is different from classical table search, e.g., used

for table augmentation, and requires the definition of an appro-

priate relevance score between entity tuples. Here, we follow a

principled approach and provide an axiomatization of the prop-

erties that such a score needs to satisfy. Based on those axioms,

we design our score.

Given a tuple 𝑡𝑄 :⟨𝑒1

𝑄
, ..., 𝑒𝑚

𝑄
⟩ from the input query 𝑄 (i.e.,

𝑡𝑄∈𝑄), and tuple 𝑡𝑇 :⟨𝑒1

𝑇
, ..., 𝑒𝑛

𝑇
⟩ from the table 𝑇∈D (i.e., 𝑡𝑇 ∈𝑇 ),

we define the concept of a relevant mapping from 𝑡𝑄 to 𝑡𝑇 as



a partial injective function
2 𝜇𝑡𝑄 ,𝑡𝑇 :𝑡𝑄 ↩→𝑡𝑇 s.t. 𝜇𝑡𝑄 ,𝑡𝑇 (𝑒𝑖𝑄 )=𝑒

𝑗

𝑇
iff

𝜎 (𝑒𝑖
𝑄
, 𝑒

𝑗

𝑇
)>0. Therefore, we identify four cases, namely:

(1) All entities in 𝑡𝑄 appear (separately) in 𝑡𝑇 , i.e., ∀𝑒𝑖𝑄∈𝑡𝑄 .

𝜇 (𝑒𝑖
𝑄
)≡𝑒𝑖

𝑄
, this is called a total exact mapping denoted 𝑡𝑄

TE≈ 𝑡𝑇 .
(2) Some, but not all, entities in 𝑡𝑄 appear in 𝑡𝑇 , i.e., ∃𝑡 ′𝑄⊂𝑡𝑄

s.t. ∀𝑒𝑖
𝑄
∈𝑡 ′

𝑄
. 𝜇 (𝑒𝑖

𝑄
)≡𝑒𝑖

𝑄
, this is called a partial exact mapping

denoted 𝑡𝑄
PE≈ 𝑡𝑇 .

(3) For each entity 𝑒𝑖
𝑄
∈𝑡𝑄 there exist a mapping entity 𝑒

𝑗

𝑇
∈𝑡𝑇 ,

i.e., ∀𝑒𝑖
𝑄
∈𝑡𝑄 . ∃𝑒 𝑗

𝑇
∈𝑡𝑇 s.t. 𝜇 (𝑒𝑖

𝑄
)=𝑒 𝑗𝑡 and 𝜎 (𝑒𝑖

𝑄
, 𝑒

𝑗

𝑇
)>0, those

are called related entities. Since 𝜇 is injective, no two entities

in 𝑡𝑄 are mapped to the same entity in 𝑡𝑇 , this is called a total

related mapping denoted 𝑡𝑄
TR≈ 𝑡𝑇 .

(4) There exists a related mapping as defined above but just of

a subset of the entities in 𝑡𝑄 , this is called a partial related

mapping denoted 𝑡𝑄
PR≈ 𝑡𝑇 .

Consider the following tuples: 𝑡1:⟨Mitch Stetter,Milwaukee Brew-
ers⟩, 𝑡2:⟨Mitch Stetter, Milwaukee Brewers, Milwaukee⟩, 𝑡3:⟨Ron
Santo, Chicago Cubs⟩, 𝑡4:⟨Ron Santo, Chicago⟩, 𝑡5:⟨Milwaukee⟩.
The following holds: 𝑡1

TE≈ 𝑡2, 𝑡2
PE≈ 𝑡1, 𝑡1

TR≈ 𝑡3, 𝑡2
PR≈ 𝑡4, and 𝑡1

PR≈ 𝑡5.
When none of the above holds for a target tuple, we say that

that the target tuple 𝑡𝑇 is irrelevant to the query tuple 𝑡𝑄 and it

should not be returned. Additionally, we note that the definition

of total related mapping holds also for the case in which some of

the mapped entities in 𝑡𝑇 are exact mappings for the entities in

𝑡𝑄 . That is, if there exists a mapping such that all entities in 𝑡𝑄
are mapped (either through an exact or related mapping) to at

least one entity in 𝑡𝑇 , then we effectively consider this case as

a total related mapping (e.g., 𝑡4
TR≈ 𝑡2 from above). Based on the

four cases above, we identify a set of foundational axioms that

the semantic relevance score should satisfy given the type of

mapping between two tuples. Hence, given a query tuple 𝑡𝑄 and

two distinct target tuples 𝑡𝑇 1 and 𝑡𝑇 2, the following must hold:

Axiom 1. if it holds that 𝑡𝑄
TE≈𝑡𝑇 1 and 𝑡𝑄

TE

0𝑡𝑇 2 then it must

also hold that SemRel(𝑡𝑄 , 𝑡𝑇 1) >SemRel(𝑡𝑄 , 𝑡𝑇 2), i.e., total exact
mappings are the most relevant.

Axiom 2. if it holds that 𝑡𝑄
PE≈𝑡𝑇 1 and 𝑡𝑄

PE≈𝑡𝑇 2∨𝑡𝑄
PR≈𝑡𝑇 2 for the

same set or a subset of entities in 𝑡𝑄 , i.e., 𝑑𝑜𝑚(𝜇𝑇 2)⊆𝑑𝑜𝑚(𝜇𝑇 1),
then it must also hold that SemRel(𝑡𝑄 , 𝑡𝑇 1) ≥ SemRel(𝑡𝑄 , 𝑡𝑇 2),
i.e., larger partial exact mapping are more relevant then mappings

that involve only a subset of the entities.

Axiom 3. if it holds that∀𝑒𝑖∈𝑡𝑄 𝜎 (𝑒𝑖 , 𝜇𝑇 1 (𝑒𝑖 )) >𝜎 (𝑒𝑖 , 𝜇𝑇 2 (𝑒𝑖 )),
then it must also hold that SemRel(𝑡𝑄 , 𝑡𝑇 1) > SemRel(𝑡𝑄 , 𝑡𝑇 2), i.e.,
tuples with more related entities have a higher relevance score.

Next, we define the SemRel relevance score that satisfies all

the above axioms and an algorithm to compute such a score.

Later, in Section 6, we introduce an optimized algorithm able to

compute an approximate solution with performance guarantees.

5 SEMANTIC SEARCH ALGORITHM

Given the above axioms and the semantic similarity score 𝜎 , here

we first describe how to produce a mapping between a query and

the tuples in a table, then we describe how to effectively compute

2
We will write 𝜇𝑇 or 𝜇 instead of 𝜇𝑡𝑄 ,𝑡𝑇

to simplify notation.

the SemRel score for a pair of tuples, and finally, we describe an

exact algorithm to solve the problem of semantic table search.

The algorithm is illustrated in Figure 3.

5.1 Mapping the Query Tuple to a Table

As seen above, to identify the relevance score between a query en-

tity tuple 𝑡𝑄 and a target entity tuple 𝑡𝑇 (from a target table𝑇 ), the

first step is that of identifying a mapping 𝜇𝑄,𝑇 between the two.

Ideally, given the semantic similarity score 𝜎 , we define a map-

ping 𝜇𝑄,𝑇 such that the cumulative score

∑
𝑒𝑖 ∈𝑡𝑄 𝜎 (𝑒𝑖 , 𝜇𝑄,𝑇 (𝑒𝑖 ))

is maximized. Furthermore, given that the semantic relevance

will need to be aggregated over all tuples of the target table, as-

suming two tuples 𝑡1

𝑇
, and 𝑡2

𝑇
from table 𝑇 , if we map entity 𝑒𝑖

from 𝑡𝑄 to entity 𝑒 𝑗 from 𝑡1

𝑇
, corresponding to attribute 𝐴∈A,

then when comparing 𝑡𝑄 to 𝑡2

𝑇
, we should also map 𝑒𝑖 to the

entity 𝑒𝑙 corresponding to 𝐴 for 𝑡2

𝑇
. That is, we map an entity

from the query to entities from the same column for all tuples in

the target table. Therefore, we need a mapping to a column in

a table that maximizes the total score SemRel for all entities in

that column. Moreover, we must ensure that each entity in the

query tuple is assigned to a different column in the target table.

Given table 𝑇 with cell values organized across columns

𝐶1, . . . ,𝐶𝑛 and rows 𝑅1, . . . , 𝑅𝑚 . Let 𝑡𝑄 denote a query tuple com-

posed of entities 𝑒1, . . . , 𝑒𝑘 . We define a column-relevance score

between a query entity 𝑒𝑖∈𝑡𝑄 , and column 𝐶 𝑗∈𝑇 as:

𝑠𝑐𝑜𝑟𝑒 (𝑒𝑖 ,𝐶 𝑗 ) =
∑︁
𝑒∈𝐶 𝑗

𝜎 (𝑒𝑖 , 𝑒)

Since we want the final score, summed across all query enti-

ties, to be maximized, we compute the relevance score for each

pair of query entity and table column to find the best mapping

function 𝜏 :𝑡𝑄 ↦→{𝐶1, ...,𝐶𝑛}. The information about the mapping

score from query entities to columns is represented in a matrix,

𝑆 , as follows:

𝑆 =
©«
𝑠𝑐𝑜𝑟𝑒 (𝑒1,𝐶1) · · · 𝑠𝑐𝑜𝑟𝑒 (𝑒1,𝐶𝑛)

.

.

.
. . .

.

.

.

𝑠𝑐𝑜𝑟𝑒 (𝑒𝑘 ,𝐶1) · · · 𝑠𝑐𝑜𝑟𝑒 (𝑒𝑘 ,𝐶𝑛)

ª®®¬
Our goal is to find an assignment for each query entity to a unique

column such that the column relevance score is maximized under

the constraint that each entity must map to a different column.

The formalization of the optimization problem is the following

argmax

𝑋

𝑘∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑆𝑖 𝑗𝑋𝑖 𝑗

where the assignment is specified by 𝑋 which is a boolean

matrix, where 𝑋𝑖 𝑗=1 if and only if row 𝑖 is assigned to column

𝑗 , and where each row is assigned to exactly one column, and

each column is assigned to at most one row (i.e., in the matrix

𝑋 , there are exactly 𝑘 ones). This assignment problem can be

solved by the Hungarian Method [21]. This can be expressed as

permuting the rows and columns of a cost matrix C to maximize

its tracemin𝐿,𝑅 𝑇𝑟 (𝐿𝐶𝑅) where L and R are permutationmatrices.

The solution to the assignment problem will provide us with the

mapping function 𝜏𝑄,𝑇 :𝑡𝑄 ↦→{𝐶1, ...,𝐶𝑛}. Therefore, to compute

𝜇𝑄,𝑇 , given the query tuple 𝑡𝑄∈𝑄 and target row 𝑡𝑇 ∈𝑇 , we map

each entity 𝑒 𝑗∈𝑡𝑄 to the entity 𝑒𝑘∈𝑡𝑇 where 𝑒𝑘=𝐶𝑘 (𝑡𝑇 ), i.e., the
entity corresponding to column 𝐶𝑘 in 𝑡𝑇 , with 𝐶𝑘=𝜏 (𝑒 𝑗 ).

The result of 𝜇𝑄,𝑇 is computed independently for each query

tuple. Thus, it is not required that all query tuples 𝑡𝑄∈𝑄 follow
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Figure 3: Semantic table search algorithm

the same schema, although this could be easily enforced. This

process is depicted in Region 1 of Figure 3, though for simplicity

both query entity tuples have the same column mapping.

5.2 The definition of the SemRel score

Here, we define the similarity measure that satisfies all the prop-

erties required by the SemRel score as defined above. Given the

query tuple 𝑡𝑄 :⟨𝑒1

𝑄
, ..., 𝑒𝑚

𝑄
⟩ (with |𝑡𝑄 |=𝑚) from the input query

𝑄 (i.e., 𝑡𝑄∈𝑄), and the target tuple 𝑡𝑇 :⟨𝑒1

𝑇
, ..., 𝑒𝑛

𝑇
⟩ from the table

𝑇∈D, we map the target tuple to an Euclidean space with the

number of dimensions equal to the number of entities in the query

tuple, i.e., R𝑚 . In this space, given a relevant mapping 𝜇:𝑡𝑄 ↦→𝑡𝑇 ,

each target tuple 𝑡𝑇 is mapped to a point 𝑝𝑇 :⟨𝑥1, ..., 𝑥𝑚⟩ with
coordinate 𝑥𝑖=𝜎 (𝑒𝑖𝑄 , 𝜇 (𝑒

𝑖
𝑄
)). For the cases where there is no rele-

vant mapping in 𝑡𝑇 for an entity 𝑒𝑖
𝑄
∈𝑡𝑄 , i.e., 𝜇 (𝑒𝑖

𝑄
) is undefined, it

follows that 𝑥𝑖=0. This is depicted in Region 2 of Figure 3. Given

the mapping of each tuple in our space, we can then compute

the semantic relevance of each tuple as their euclidean distance D

from the perfect match, i.e., from the point corresponding to 𝑡𝑄
which will have coordinates 𝑥𝑖=1 𝑖∈[1,𝑚] (Region 3 of Figure 3).

Our observation is that the most relevant tuples are those

containing all the entities in the user query, i.e., those for which it

holds 𝑡𝑄
TE≈ 𝑡𝑇 (Axiom 1). These tuples will have scores𝜎 (𝑒𝑖

𝑄
, 𝑒

𝑗

𝑇
) =

1 for 𝑒
𝑗

𝑇
=𝜇 (𝑒𝑖

𝑄
). Then, combining Axiom 2 and 3, we notice that

the second best set of tuples is the set where the majority of the

tuples in 𝑡𝑇 are exact mapping of tuples in 𝑡𝑄 .

In the above definition, all the entities in a tuple contribute

for the final relevance score in the same way. However, the en-

tities in a query have different roles, i.e., some entities will be

more important than others in determining the relevance of a

given target tuple. For example, in a query like ⟨Mitch Stetter,
Milwaukee Brewers⟩, we can intuitively assume that the inter-

est of the user is primarily about baseball players, and the team

where they play to a lesser degree. Therefore, a tuple containing

only Milwaukee Brewers is intuitively less relevant than a tuple

containing only Mitch Stetter. To cope with this observation, we

propose an instantiation of SemRel able to capture the need for

differentiating the discriminate power of the entities in the user

query. To do so, we introduce the concept of informativeness of

an entity, i.e., I:N↦→[0, 1] that automatically assigns a weight to

the entities in the query based on entity frequency in the corpus.

Thus, we compute SemRel as a the weighted euclidean distance

as the following

DI (𝑝𝑄 , 𝑝𝑇 ) =
√︄ ∑︁

𝑖∈[1,𝑚]
I(𝑒𝑖

𝑄
) (1 − 𝑥𝑖 )2 (2)

We convert theweighted Euclidean distance into a similarity score,

such that a score closer to 1 means a smaller Euclidean distance.

Algorithm 1: Table Search

Input: D={𝑇1,𝑇2, ...,𝑇𝑛 };𝑄 :{𝑡𝑞1, 𝑡𝑞2, ...,𝑡𝑞𝑚 }
Input: I:N↦→[0, 1]; 𝜎 :N×N↦→[0, 1]
Output: Table Relevance scores ⟨𝑇𝑖 , 𝛼𝑖 ⟩∀𝑇𝑖 ∈D

1 tableScores← [ ]

2 forall𝑇 ∈D do

3 qScores← [ ]

4 forall 𝑡𝑞∈𝑄 do

5 columnMapping←hungarianMapping(𝑡𝑞,𝑇 )

6 rScores← [ ]

7 forall row∈𝑇 do

8 eScores← [ ]

9 forall e∈𝑡𝑞 do

10 mappedToColumn←columnMapping[𝑒]

11 eScores[𝑒 ]←𝜎 (𝑒, row[mappedToColumn])
12 rScores[row]←eScores

13 aggScores←aggRowScores(rScores)

14 qScores[𝑡𝑞 ]←1/(
√︃∑

𝑒∈𝑡𝑞 I(𝑒 ) (1 − aggScores[𝑒 ] )2 + 1)
15 tableScores [𝑇 ]←(∑𝑡𝑞∈𝑄qScores[𝑡𝑞 ] )/|𝑄 |

SemRel(𝑡𝑄 , 𝑡𝑇 ) =
1

DI (𝑝𝑄 , 𝑝𝑇 ) + 1

(3)

The final table score is the average of the weighted euclidean

distances (Region 4 of Figure 3).

5.3 Computing Semantic Relevance

To compute the final semantic relevance score of all tables in

the data lake, we follow the procedure described by Algorithm 1.

The algorithm receives as input the set of tables𝑇𝑖∈D, a query𝑄

consisting of a set of tuples 𝑡𝑄𝑖
∈𝑄 , an entity weighing function 𝐼 ,

and an entity semantic similarity scoring function 𝜎 . The output

is then the value of SemRel for each data lake table.

In this work, we experiment with two alternative similarity

functions for entities. The first is derived from the Jaccard sim-

ilarity of the sets of entity types of two entities, the second is

the cosine similarity between pairs of entity embeddings. For the

former case, we assume two entities are similar if they share the

same set of entity types. In rich KGs, it is common for entities

to be annotated with multiple types at different levels of gran-

ularity, e.g., in DBpedia, Milwaukee Brewers is annotated both

as a sports team and as an organization. Hence, we adjust the

Jaccard similarity score such that we return a similarity of 1.0

when comparing an entity to itself, and otherwise, we return the

Jaccard similarity between the two sets of entity types capped at

0.95. Specifically, given T1 as the set of entity types for entity 𝑒𝑖 ,

we define our adjusted Jaccard similarity as:



𝐽𝑎𝑐𝑐𝑎𝑟𝑑*(𝑒1, 𝑒2) =
{

1 if 𝑒1≡𝑒2

min(0.95,
| T1∩T2 |
| T1∪T2 | ) otherwise

(4)

The similarity based on entity types relies on the quality and

completeness of the ontology in the KG, but not on other con-

nections with other entities. An alternative similarity function is

based on embeddings. Entity embeddings, instead, are obtained

through a self-supervised machine learning approach that learns

a vector representation for every entity in the KG based on their

higher-order connections to other entities [7, 54]. Hence, each

entity is associated with a vector, and two entity vectors are sim-

ilar when the two corresponding entities have similar semantic

connections within the graph. In this model, given V𝑖 as the en-
tity embedding vector for 𝑒𝑖 , the semantic similarity 𝜎 (𝑒1, 𝑒2) is
computed as the cosine similarity between their vectors.

Note that our search framework and the optimization algorithm

are designed to generalize also to other similarity scores based ei-

ther on set similarities or vector similarities. For instance, one

can also compute the similarity between two entities based on

the set of predicates around them [47] or replace RDF2Vec with

other entity embedding approaches designed specifically for node

classification [1, 7]. We leave the exploration of alternative simi-

larities as future work.

The algorithm then computes the relevance score for all tables

as follows. For a table in the data lake, we compute a mapping

𝜏 :𝑡𝑄 ↦→{𝐶1, ...,𝐶𝑛} from each query entity to a table column using

the Hungarian Method, such that the summed similarity score

across all query entities is maximized (line 3). Then, we generate

a mapping from each query tuple to each table row (lines 7-

12). Here, we compute the semantic similarity score between

each entity in the query tuple 𝑒∈𝑡𝑄 and each entity in the target

table row 𝑒′∈𝑡𝑇 . This will result in a score for every row in the

table. Then, we aggregate all these scores to obtain the final

score for the entire table (line 13). We consider two types of

aggregation: maximal and average score. The maximal score

extracts the maximal semantic similarity score among all entities

mapped to the same query entity, the average score computes the

average similarity instead. Given the aggregated tuple relevance

score for 𝑡𝑄 , we compute the Euclidean distance from 𝑡𝑄 to the

point 𝑥𝑖 = 1 𝑖∈[1, |𝑡𝑄 |] which is converted to a distance similarity

score 0≤𝑠≤1, where 𝑠 closer to 1 means higher similarity (line

14). As described in the previous section, this allows weighing

the similarity based on the relative frequency of query entities in

the entire corpus. The final table relevance score is the average

of query tuple relevance scores (line 15).

The time complexity of Algorithm 1 is determined by the

mapping function 𝜇𝑇,𝑄 . Given the number of table rows 𝑅𝑇 , the

number of table columns 𝐶𝑇 , the number of query tuples 𝑅𝑄 ,

and the number of query entities per query tuple 𝐶𝑄 , the time

complexity is defined as O(𝑅𝑇𝐶𝑇𝑅𝑄𝐶𝑄 ). However, as the query
is usually small, the time complexity is in practice O(𝑅𝑇𝐶𝑇 ).

6 SEMANTIC SEARCH PREFILTERING

We now present a pre-filtering technique to reduce the set of

tables over which we need to compute the relevance score, given

that we are usually interested in only the top-K results, i.e.,

the most similar tables. To achieve this, we employ a Locality-

Sensitive Hashing (LSH) scheme, which groups similar items into

the same bucket. Specifically, we use the set of entity types or

entity embeddings as input to LSH such that similar entities are

hashed into the same buckets. Then, we retrieve the subset of

tables to rank based on the entities they contain. This results in

our Locality-Sensitive Entity-Index (LSEI) for tables.

6.1 Building Locality-Sensitive Indexes

The goal is to compute signatures of each entity. LSH requires as

input a vector representation for the entity to compute a reduced

signature for that vector. The signature is further divided into

bands. Each band is further hashed to find the corresponding

bucket for similar entities, hence each distinct band corresponds

to a distinct group of buckets, and within each group of buckets,

an entity appears only in one of them.

LSEI for Entity Types.When comparing entities based on their

types, we represent each type in the KG by a numeric index. We

mimic the idea of shingling in min-hashing for documents by

creating a bit vector of size |T |×|T | for an entity, where |T | is
the number of types, and flip bits to 1s in positions corresponding

to pairs of types, e.g., a pair of types with indices 24 and 48 have

index 2448 in the bit vector. We hash this bit vector by LSH into

an entity signature with a dimension equal to the number of

permutation vectors. Since some types are extremely frequent,

e.g., every entity has the type owl:Thing in DBpedia, we filter

away those types that appear in more than 50% of all tables in the

corpus, the idea being that a type that describes more than half of

the entities cannot be really informative. This percentage is cho-

sen based on observations from smaller experiments. Decreasing

this percentage leads to a decrease in prefiltering efficacy.

LSEI for Entity Embeddings. While traditional LSH schemes

for sets are based on the concept of random permutations, LSH

schemes for embeddings are based on the concept of random

projections [11]. Therefore, the signature dimension equals the

number of projection vectors, each dividing the space in a positive

and negative sub-space. Then, the entity signature is a bit vector,

where each 1 means that the dot product between the entity

embeddings vector and a given projection vector is positive.

Index Structure. An LSH index has several groups of buckets.

When inserting an entity, we split the signature into multiple

bands, one for each group of buckets. The size of the bands and

the number of permutation/projection vectors determine the

number of bucket groups, e.g., an LSH index using 32 permu-

tation/projection vectors and a band size of 8 has 4 bands and

thus 4 bucket groups. The number of buckets in each bucket

group is 2
𝐵
, where 𝐵 is the band size. Therefore, large band sizes

result in a large number of buckets, each more likely to contain

only a few entities. This corresponds to a larger search space

reduction. However, a higher search space reduction also risks

loss of accuracy. Finally, for each entity in the LSEI, we maintain

a list of all the table identifiers in which that entity appears.

6.2 Locality-Sensitive Entity-Index

Prefiltering

Before executing our table search algorithm (Algorithm 1), we

search our LSH index using the entities in the input query to

reduce the search space by prefiltering tables. All entities in the

query are individually used to search our LSH index, and the

resulting set of tables per query entity are merged into the new,

reduced search space. When searching in the LSH index with

a single entity, all entities in each matching bucket are merged

into one set of entities, and the tables these entities are linked

to are returned. Some tables may be found multiple times when

merging the found buckets of entities and their linked tables. This



Table 2: Benchmark statistics: # of tables (T), mean # of rows (R),

mean # of columns (C), and mean entity link coverage (Cov)

Queries Data Lake Tables

T C T R C Cov

WT 2015 100 3.4 238,038 35.1 5.8 27.7%

WT 2019 100 2.4 457,714 23.9 6.3 18.2%

GitTables 100 3.4 864,478 142.0 12.0 29.6%

Synthetic 100 3.4 1,732,328 9.6 5.8 34.8%

gives the opportunity to further restrict the tables returned for a

single entity by implementing a voting strategy. That is, we treat

this intermediate result set as a bag of tables, i.e., maintaining

duplicates, and count the number of occurrences of a table in the

results set, so that only those tables that appear a certain amount

of times are returned.

Column aggregation. An alternative approach to compute en-

tity signatures that also saves space is by aggregating vector

representations of entities in the same column into one single

vector representation. When constructing this kind of LSH in-

dex using types, we merge all entity types from the entities in a

single table column into one unique set of types and compute a

signature of that column using this merged set of types. When

using embeddings, we compute the average embeddings vector

of all entities in a column.

We also note that the higher the number of query entities,

the higher the number of LSH lookups, which results in a larger

result set. Thus, we further optimize the LSH lookup by apply-

ing aggregation by column on the input query level in the same

way as described above for tables. This introduces a further ap-

proximation with the benefit of reducing the search cost since it

effectively treats queries composed of multiple entity tuples as if

they were 1-tuple queries.

7 EVALUATION

We evaluate the output quality and the scalability of our semantic

table search algorithm by implementing our approaches within a

prototype system:Thetis. We show that keyword search can only

find a limited number of tables that contain exact matches and

is not adequate for discovering relevant tables without matches.

Similarly, union- and join-based techniques do not address ade-

quately this task. We show that our prefiltering techniques with

LSH ensure scalability without sacrificing search quality. To this

end, we compare multiple system configurations and recommend

the most appropriate. We evaluate Thetis on queries of differ-

ent sizes and show that, although runtime is affected by larger

queries, Thetis can retrieve high-quality tables efficiently.

7.1 Experimental Setup

We compare Thetis to BM25 [56], a well-established keyword

search algorithm that has been used for table search [62, 66, 68].

We further compare to state-of-the-art unionability and joinabil-

ity approaches SANTOS [36], Starmie [25] and D
3
L [9], respec-

tively. We also compare against a deep-learning Table Repre-

sentation, TURL [19], by adapting it for our task. Using TURL’s

pre-trained model, we aggregate all contextualized vector rep-

resentations in each table to construct an embedding for each

table and query. Cosine similarity between the table and query

representations is used to rank the table search output. We do

not compare to other methods like Aurum [27] which rely on

value equality between similar attributes, something already cov-

ered by BM25, or heuristics that have already been proven less

effective than D
3
L and SANTOS. We also do not compare to

SemProp [14], as it is an extension to Aurum, and its repository

is outdated and non-operational. Furthermore, we also do not

compare against S3D [29], as the code is not publicly available

and RapidMiner [30, 37, 38] because the code is not working, and

the authors could not offer any help.

All of the components of our experimental setup are available

online as open-source
3
. We use a snapshot of DBpedia from 2021

as our reference KG containing ∼31M nodes, ∼89M edges, 763

distinct types, and 10,051 distinct predicates, however, Thetis

works with any KG. Importantly, DBpedia has a range of coverage

on the data lakes we consider (see below) making it particularly

suitable for our evaluations. Evaluating Thetis on other public

KGs is beyond the scope of this work. Nonetheless, a typical

alternative would be WikiData, which showcases a rich vocabu-

lary of entity and relationship types that is slightly richer than

DBpedia’s, and with which we would expect a slightly higher

accuracy overall. We use RDF2Vec [54] to generate embeddings

on our reference KG. However, Thetis can accommodate any

set of entity embeddings. Experiments are conducted on a server

with 2TB of RAM and a 64-core CPU.

Data Lake Benchmarks. We evaluate Thetis over a real-

world, data discovery benchmark composed of two datasets from

Wikipedia tables (WT) in Wikipedia pages (WP) [40]. We denote

the two snapshots of Wikipedia tables as WT2015 and WT2019

from 2015 and 2019, respectively, which come with tuple queries

consisting of various numbers of tuples (see characteristics in

Table 2). In our evaluation, we have extracted a heterogeneous

set of 50 1- and 5-tuples queries of width of at least 3, where

the 1-tuple queries are contained in the 5-tuples queries. Note

that, of the eighteen approaches mentioned in Table 1, 5 of them

evaluate on less than 50K tables and 8 on less than 500K tables.

Moreover, the WT benchmarks provide entity links to DBpedia

and the problem of improving entity linking from tables to a KG

is orthogonal to our work, where there are already numerous

works tackling this problem [1, 6, 26]. These entity links can also

be provided for other public KGs through owl:sameAs relations.

The benchmarks come with ground truth rankings of tables con-

structed based on Wikipedia categories and navigational links.

In our experiments, unless specified otherwise, we focus first

on results over WT2015, which given the smaller size and the

highest coverage, i.e., the number of cells linked to a KG entity,

allows us to test more efficiently different settings. We use recall

to evaluate the correctness of the returned result set and Normal-

ized Discounted Cumulative Gain (NDCG) to evaluate the result

set rankings. We compute recall as the number of retrieved tables

that are in the top-𝑘 ground truth relevant tables according to

their Jaccard similarity to the query.

To test scalability, we experiment with the GitTables dataset,

since it contains 864,478 tables with an average number of

columns and rows much larger than WTs (Table 2). Note that Git-

Tables does not come with ground truth relevance annotations;

hence, we cannot use GitTables to evaluate NDCG or recall. We

additionally generate a synthetic dataset from WT2015 (called

Synthetic in Table 2). For each table, we randomly select some

rows and insert them into a new synthetic table in random order.

We used this method to generate 1,494,290 new tables which

we split into three corpora of different sizes: 500K, 1M, and all

3
https://github.com/EDAO-Project/TableSearch

https://github.com/EDAO-Project/TableSearch
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Figure 4: NDCG at top-10 on WT2015. Comparing brute-force ap-

proaches for types/embeddings (STST/STSE), different configura-

tions of LSH prefiltering: (number of permutation/projection vec-

tors, band size), BM25 on text queries, and Starmie union search.
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Figure 5: Recall at top-100 and top-200, including BM25 comple-

mented with STS. STSTC/STSEC: Semantic tuple Search using

Types/Embeddings Complemented with BM25.

1,494,290 tables. In each corpus, we include the original WTs,

resulting in corpora of 738,038, 1,238,038, and 1,732,328 tables.

We convert the query tuples into keyword queries for BM25

which we refer to as text queries. We extract the entire text

contents in each cell in a query and let those be keywords.

7.2 Semantic Table Search Quality

We evaluate Thetis against BM25, SANTOS, D
3
L, and TURL on

50 1-tuple and 50 5-tuple queries on WT2015. We focus on the ex-

act (i.e., without prefiltering) approaches: Semantic Table Search

using Types (STST) and using Embeddings (STSE). We compare

the NDCG scores (Figure 4) as well as the improvement in recall

separately and when using both techniques jointly (Figure 5).

Ranking Quality and Recall.

Comparing NDCG scores at top-10 (Figure 4: a and g), Thetis

shows a similar ranking quality, i.e., precision, to BM25 text

queries on both 1- and 5-tuple queries. This is due to BM25 effec-

tively finding the ground truth relevant tables containing exact

matches with the text queries, whereas Thetis finds a different

set of ground truth relevant tables that do not necessarily con-

tain exact matches. Using a larger KG, such as WikiData, would

expectedly result in a better performance of Thetis, as Wiki-

Data is more detailed and descriptive than DBpedia for many

entities. Union search with Starmie achieves worse performance

as relevant tables are often not unionable. The performance of

SANTOS and D
3
L as representative union and join search ap-

proaches, respectively, is even worse with NDCG scores ∼1000x

lower than Thetis and is therefore not plotted. Specifically, SAN-

TOS achieves an average NDCG score of 0.0001 for both 1- and

5-tuple queries, and D
3
L achieves 0.00006 and 0 for 1- and 5-tuple

queries, respectively. This is due to these methods not being

designed to take into account topical relevance, as described in

Section 3.1. Therefore, these methods are not able to rank ta-

bles according to semantic relevance, and thereby they fail to

properly rank relevant tables, as experiments show. However,

the improved performance of Starmie over SANTOS is due to its

ability to capture rich contextual semantic information within

tables using trained column encoders. Similarly, TURL achieves

average NDCG scores of 0.004 and 0.005 for the same queries, re-

spectively. However, TURL’s performance can reach 0.488 using

entire source tables. This reflects that TURL is not designed for

semantic search, but rather for table understanding.

Given the data discovery use case, it is important to evaluate

the recall to see how the methods allow for retrieval of tables

from the long tail. Thus, we compute top-100 and top-200 re-

sults (Figure 5) and measure the recall achieved by the methods.

Here, we see once again similar results across all methods. BM25

achieves a higher third quartile in NDCG scores, but the median

and mean are similar to our approach. It is important to note

that the results for 5-tuple queries have lower recall compared to

those for 1-tuple queries despite the increased informativeness

in 5-tuple queries. This is due to the 5-tuple queries becoming

easily over-specialized. The performance of STST and STSE in

NDCG and recall are similar. STST is beneficial when the set of

entity types is sufficiently fine-grained, whereas STSE depends

on the embedding quality. Moreover, STSE works well when the

taxonomy is less detailed, however, the embeddings are at times

not able to distinguish entities of the same type or domain, e.g.,

two countries or a country and its capital.

Despite the similar performance in NDCG and recall, the two

approaches find remarkably different subsets of relevant tables.

Specifically, we compute the difference between the top-100 re-

turned tables by BM25 and Thetis. The median size of the results

set difference is 66 and 80 tables for STST on 1- and 5-tuples

queries, respectively. The median is 100 for STSE on both 1- and

5-tuple queries. Hence, our semantic table search algorithm finds

a disjoint set of tables from BM25. We therefore study the ben-

efit of a Semantic Data Lake when combining Semantic Table

Search and BM25. We extracted the top 50% from each method,

merged the two result sets, and measured recall at top-100 and

200. We refer to these results as Semantic Table Search using

Types/Embeddings Complemented with BM25 (STSTC/STSEC).

Shown in Figure 5, STSTC/STSEC achieve a much higher recall.

Specifically, for top-100 on 1-tuple queries, the median recall is

improved by 9.1% compared to BM25text for both STSTC/STSEC.

On 5-tuple queries, recall is improved by 187.8% and 156.6% com-

pared to BM25text for STSTC/STSEC, respectively. For top-200,

recall improves by 18.5% and 25.0% on 1-tuple queries and by

536.9% and 459.5% on 5-tuple queries for STSTC/STSEC, respec-

tively. Hence, complementing tables found by exact matching

with tables found by semantic relevance combines the best of

both worlds. There are many other methods to complement the

two approaches, such as using learning to rank, but we leave this

as future work. Furthermore, exact matching over metadata can

also be incorporated as a third signal, but only when metadata is

informative and consistent between tables.

Aggregating row scores. As mentioned in Section 5.3, in Algo-

rithm 1 line 13, we need to aggregate the SemRel scores across



Table 3: Runtime in seconds with LSH prefiltering by each LSH configuration on 1- and 5-tuples queries and 1 and 3 votes

1 Vote 3 Votes

STST STSE T(32, 8) T(128, 8) T(30, 10) E(32, 8) E(128, 8) E(30, 10) T(32, 8) T(128, 8) T(30, 10) E(32, 8) E(128, 8) E(30, 10)

1-Tuple 73.0 74.6 18.3 36.9 12.5 66.6 71.9 56.5 11.3 11.3 11.1 23.0 71.2 4.4

5-Tuples 242.0 337.9 1.2 1.8 1.5 85.2 83.4 64.9 1.1 1.2 1.1 36.1 80.5 6.4

Table 4: Search space reduction with LSH prefiltering by each LSH configuration on 1- and 5-tuples queries and 1 and 3 votes

1 Vote 3 Votes

T(32, 8) T(128, 8) T(30, 10) E(32, 8) E(128, 8) E(30, 10) T(32, 8) T(128, 8) T(30, 10) E(32, 8) E(128, 8) E(30, 10)

1-Tuple 83.0% 71.1% 88.6% 12.4% 0.01% 34.9% 89.4% 89.2% 89.4% 83.8% 8.3% 98.0%

5-Tuples 82.8% 61.4% 88.9% 11.8% 0.2% 33.1% 90.2% 89.6% 90.2% 82.5% 10.2% 97.6%

rows for a given query tuple. We experiment with either picking

the maximum or the average of these scores across all table rows

per query tuple. Results on NDCG at top-10 (not reported due to

space limitations) show that aggregation via maximum provides

the best results, with up to 5x better NDCG scores on average, as

it better amplifies the relevance signal from the matching tuples.

7.3 Runtime Evaluations

We evaluate runtime on a Dell R7425 with 2TB or RAM, 64 AMD

7551 cores, and a 10TB HDD.

Table scoring.We study the computation cost of the mapping

function 𝜇𝑇,𝑄 (Section 5.3) and compare it to the total cost re-

quired to score a single table. We find that the total, average

runtimes of scoring a WT2015 table using 1- and 5-tuple queries

are 2.2ms and 8.6ms, respectively. Similarly, the average runtimes

of scoring a GitTable on the same queries are 3.8ms and 16.6ms,

respectively. On WT2015, for 1-tuple quieres, 63.7% and 58.6% of

runtime is spent computing 𝜇𝑇,𝑄 using types and embeddings,

respectively. On 5-tuple queries, these fractions are 74.5% and

67.3%. Similarly, on GitTables, 68.0% and 62.4% are spent on this

computation on 1-tuple queries, and 78.1% and 75.7% on 5-tuple

queries. Hence, the overall time spent for Algorithm 1 and the

cost of 𝜇𝑇,𝑄 are limited, even when dealing with larger tables.

LSH Configuration.We compare the effect of 6 different LSH

configurations when using entity types and embeddings. This

will inform the selection of our best configuration regarding the

tradeoff between runtime reduction and output quality. These

configurations are denoted by (𝑋,𝑌 ), where 𝑋 is the number

of permutation/projection vectors and 𝑌 is the band size. These

LSH configurations have been selected after testing various con-

figurations on a smaller subset of the corpus. We apply a voting

threshold, which indicates the frequency an entity must appear

in the result set of an LSH lookup. We compare the NDCG scores

obtained with prefiltering with these configurations (Figure 4 b, c,

h, i, e, f, k, and l) to our semantic table search without prefiltering

(Figure 4 a and g). All LSH configurations achieve equivalent

NDCG scores as our semantic table search algorithm without

prefiltering. Experimenting with table column aggregation, as

described in Section 6.2, did not provide any NDCG scores above

those in Figure 4.

Thetis’s search runtime is correlated with the number of

query tuples (Table 3), as each query tuple is compared to all

table rows. The runtime is also correlated to the search space

reduction achieved by each LSH configuration (Table 4): higher

reduction corresponds to faster response time. By comparing

Thetis’s runtime with LSH prefiltering with the 3 chosen LSH

configurations (Table 3), we see that the (30, 10)-configuration

slightly outperforms the other two configurations, as this con-

figuration has 4 times more buckets per bucket group than the

other two configurations. Therefore, each bucket contains fewer

tables. Furthermore, this configuration also has the lowest num-

ber of bucket groups leading to a lower number of buckets to

be merged into the final LSH result set. Finally, requiring 3 table

votes induces even faster runtime without decreasing NDCG. In

summary, our experiments show that the (30, 10)-configuration is

the best-performing LSH configuration on our dataset, as it pro-

vides the highest search space reduction while achieving similar

NDCG scores as our semantic table search algorithm without pre-

filtering, although the other configurations also achieve similarly

good performances. Therefore, for the remainder of this section,

we will only experiment with the (30, 10)-configuration, as this

configuration also has the best performance on other datasets.

We also evaluate a naive prefiltering technique using BM25

keyword search instead. On 1-tuple queries, NDCG decreased

by 18.1% compared to LSH using types and by 29.9% compared

to LSH using embeddings. On 5-tuple queries, NDCG decreased

by 13.3% and 13.4%, respectively. Hence, BM25 filters out many

relevant tables and is not a valid prefiltering method.

7.4 Experiments on Other Datasets

Synthetic Dataset. Using 0.7M tables, the runtimes on 1-tuple

queries are on average 20.7s using types and 56.2s using embed-

dings. These runtimes increase to 27.4s and 71.8s on 1.2M tables

and 29.9s and 85.1s on 1.7M tables. The same linear runtime in-

crease is observed using 5-tuple queries: 54.4s and 282.8s on 0.7M

tables, 73.4s and 343.4s on 1.2M tables, and 77.3s and 369.4s on

1.7M tables. The linear increase in runtime for each corpus size

is because the search space reduction percentage is stable on all

synthetic corpora. Runtimes using types are faster than using

embeddings due to LSH using types filtering out a larger fraction

of the search space: on average 91% prefiltered using types and

74% using embeddings.

Experiments on WT2019. We also evaluate Thetis on the

WT2019 dataset, a dataset with more tables and a significantly

lower entity link coverage.Thetis achieves average NDCG scores

of 0.55 using both types and embeddings on 1-tuple queries and

0.61 and 0.62 on 5-tuple queries. These scores are very similar

to those presented in Figure 4, showing that the accuracy of

Thetis is not greatly influence by a drop in coverage from 27.7%

to 18.2% (see Table 2). Since WT2019 is a larger dataset and the

search space reduction percentages are similar to those on the

WT2015 dataset, the runtimes are slower compared to WT2015.

The runtimes are at 26.2s and 35.1s on average using types and

embeddings on 1-tuple queries, respectively, and 95.4s and 189.0s

on 5-tuple queries.

Experiments on GitTables.We evaluate the runtime of Thetis

on GitTables consisting of larger tables, i.e, more rows and

columns (see Table 2). We do not evaluate the ranking quality on
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Figure 6: NDCG at top-10 when decreasing coverage

this dataset, as it does not come with ground truth. Furthermore,

GitTables do not comewith entity link annotations. Therefore, we

construct Lucene indexes using the KG entity labels and perform

keyword search to link mentions to KG entities. The resulting

runtimes are 1.7s and 3.7s on 1-tuple queries and 2.2s and 14.9s

on 5-tuple queries. Therefore, the runtimes on GitTables are com-

parable to those on the corpora containing smaller tables, i.e.,

WT2015 and WT2019. This is due to the LSH prefiltering reduc-

ing the GitTables corpus by more than 98% for all queries, as the

table entities are more evenly distributed across the LSH buckets,

and hence, the LSH lookups are more selective. Thus, Thetis

effectively has to rank fewer tables than onWT2015 andWT2019.

7.5 Varying Entity Linking Coverage

Thetis is designed to exploit the contextual information offered

by a KG when entities in the tables are linked to it, while it

does not require a table to be fully linked. Here, we refer to link

coverage as the percentage of linked entities among all its cells.

Intuitively, the higher the coverage the higher the information we

can infer about the contents of a table. To maximize the coverage,

it is important that the target KG can describe all the important

entities in the data lake. Nonetheless, it is very common to test

open-domain KGs when trying to integrate data in data lakes [34].

In the experiments shown above, we have seen that even with

less than 30% of cells being linked to KG entities on average, our

approach is competitive in precision to BM25 while being able to

retrieve a large set of tables that were not retrieved otherwise. Thus,

even with partial overlap between the KG domain and the tables,

our approach is effective in retrieving relevant data.

We further experiment with different levels of table link cover-

age (Figure 6). Specifically, we retrieve top-1000 tables and keep

only tables with at most a given link coverage, e.g., only tables

with link coverage up to 60%. We then evaluate NDCG on the

top-10 of those retrieved tables. As expected, the tables become

increasingly more difficult to retrieve as entity link coverage de-

creases, e.g., we see a drop in performance with less than 40% of

entities linked to the KG. Yet, Thetis still retrieves relevant tables

that BM25 cannot retrieve. For 40% link coverage, the median

top-10 result set difference is 3 on 1-tuple queries using types

and 2 using embeddings. On 5-tuple queries, these numbers are

4 and 3, respectively. Further, there are still cases where, even

when not many entities are linked, the method can achieve up to

0.8 of NDCG as it can capitalize on the semantic information of

the few entities linked.

We also perform an experiment (not reported in the figures

due to space limitations), where we substitute the ground truth

entity links in WT15 with the predicted entity links retrieved

with a state-of-the-art entity linker (EMBLOOKUP [1]). Using

this entity linker, the mean linking coverage is only 20.3% (com-

pared to 27.7% on WT15) and the F1-score of the employed entity

linker is only 0.21. Despite this, Thetis achieves an NDCG score

of 0.14 using types and 𝑘 = 10 and 0.20 when using embeddings

for 1-tuple queries and 0.26 and 0.29 for 5-tuples queries using

types and embeddings, respectively. This performance is better

than the performance when decreasing the percentage of ground

truth entity links to at most 40% per table in Figure 6. Note that

the 20.3% is the mean coverage, whereas the 40% in Figure 6 is

an upper bound. Therefore, Thetis is still able to retrieve mean-

ingful results even when faced with poor entity linking quality.

Moreover, Thetis will directly benefit from future developments

in entity linking methods.

8 CONCLUSION AND FUTUREWORK

We have defined semantic data lakes and the semantic table search

task for which we have presented a solution Thetis. Thetis ex-

ploits a reference KG to facilitate entity-centric, exemplar query-

ing for semantically related tables. Thetis includes a search space

pre-filtering method that uses LSH to improve the runtime by

up to 17 times. Our experiments show that complementing key-

word search with Thetis allows one to find more relevant tables

improving recall by up to 5.4 times. In the future, we plan to

explore the impact of alternative embeddings and more advanced

structural graph embeddings. We will also experiment with al-

ternative similarity metrics to improve the results for the case of

over-specialized queries. We will also explore using a combina-

tion of similarity measures in Thetis, including complementing

BM25 with Thetis using both types and embeddings in a uni-

fied manner. Finally, incorporating available metadata as a third

signal in our relevance ranking is also a possibility to explore.
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