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ABSTRACT
Table search aims to answer a query with a ranked list of tables.

Unfortunately, current test corpora have focused mostly on needle-

in-the-haystack tasks, where only a few tables are expected to

exactly match the query intent. Instead, table search tasks often

arise in response to the need for retrieving new datasets or augment-

ing existing ones, e.g., for data augmentation within data science or

machine learning pipelines. Existing table repositories and bench-

marks are limited in their ability to test retrieval methods for table

search tasks. Thus, to close this gap, we introduce a novel dataset for

query-by-example Semantic Table Search. This novel dataset con-

sists of two snapshots of the large-scale Wikipedia tables collection

from 2013 and 2019 with two important additions: (1) a page and

topic aware ground truth relevance judgment and (2) a large-scale

DBpedia entity linking annotation. Moreover, we generate a novel

set of entity-centric queries that allows testing existing methods

under a novel search scenario: semantic exploratory search. The

resulting resource consists of 9,296 novel queries, 610,553 query-

table relevance annotations, and 238,038 entity-linked tables from

the 2013 snapshot. Similarly, on the 2019 snapshot, the resource

consists of 2,560 queries, 958,214 relevance annotations, and 457,714

total tables. This makes our resource the largest annotated table-

search corpus to date (97 times more queries and 956 times more

annotated tables than any existing benchmark). We perform a user

study among domain experts and prove that these annotators agree

with the automatically generated relevance annotations. As a re-

sult, we can re-evaluate some basic assumptions behind existing

table search approaches identifying their shortcomings along with

promising novel research directions.

CCS CONCEPTS
• Information systems → Information retrieval.
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1 INTRODUCTION
Tables are one of the most usedmodels for organizing data in almost

any domain [1, 5, 10]. Numerous approaches have been proposed

to retrieve tables within large tabular data corpora, i.e., the table

search task [36, 38]. This includes Web tables, such as Wikipedia

tables [2], tabular data represented within data lakes, and Open

Data repositories [28].

There are two common variants of table search: the first ex-

pects the information need to be expressed as a keyword query, and

the second accepts an existing query table, i.e., “query-by-example-

table” [38] (or QbE for short). For keyword queries, the expec-

tation is that a user will consider the first few (highest ranked)

answers, analogous to Web page search. QbE is instead often re-

quired by users who need to identify new datasets or to expand an

initial dataset they have at hand, i.e., example-based exploratory

search [25, 38]. Hence, in the latter case, the search engine may

retrieve a larger set of tables (all qualifying tables), which could be

relevant even when their content does not exactly overlap with the

content of the query. For example, in dataset augmentation, it is

important to identify all tables that can provide additional features

or samples that do not appear in the query table [27, 38].

Therefore, the relevance of a candidate table extends beyond

simple content matching and requires an understanding of the

semantics of the query table [15, 25, 36, 38]. This task is referred to

as Semantic Table Search (STS) [25, 36]. Thus, in some proposals, an

STS engine can also exploit a reference knowledge graph (KG) to

enable entity-centric similarity measurements of KG entities which

thereby allows to rank tables by semantic relevance [4, 12, 13, 19].

Example 1.1. Consider a betting company analyzing baseball

teams and lead players to cross-reference their performance. Given

some baseball teams of interest, an initial query table would contain

some players from two teams of interest, as in Figure 1. A data

scientist within the betting company then executes this query in
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OpponentDate#

Query Table

2009 Milwaukee Brewers season Mitch Stetter Aaron Heilman

2009 Chicago Cubs season Micah Hoffpauir Ron Santo

1 April 6 Astros 4-2 Zambrano

1. Date Opponent Score Win#

2 April 7 Astros 3-2 Cotts

2. Player G AB R

Willy Aybar 6 18 0

Jason Bartlett

Pat Burrell

16

16

59

53

11

4

BOS CWS CLE

4-5

5-2

5-4

4-4

4-4

2-7

2-5

7-2

10-8

8-10

3-5

6-1

9-9

4-14

Team League Player

Los Angeles
Angels

Pacific Coast League

Birmingham
Barons

Southern Association
Moline Plow

Boys
Illinois-Indiana-Iowa

League
Portsmouth

Cubs Piedmont League

3.

Truck Hannah

Fresco
Thompson

Mike Gazella

Dick Luckey

Team

Baltimore

Boston

Chicago

Cleveland

BAL

2-16

16-2

Level

A1

AA

B

B Portsmouth Cubs

Moline Plow Boys

Birmingham
Barons

Los Angeles
Angels

Ground Truth

K.

Figure 1: An example query table containing baseball teams
and players and a set ground truth semantically relevant
tables. Notice that a keyword-based approach will be unable
to retrieve tables such as 1 and 2 even though they are highly
relevant to the query.

an Open Data portal for other datasets to cross-reference their

results. The STS engine then retrieves tables recording similar data

for other baseball teams or players, as well as player transfers

between teams and team results in different games as context. Yet,

the STS engine should also recognize when information is not so

relevant or likely irrelevant, e.g., a list of teams and player names

but from different sports, even if the teams are from the same cities

as the one in the query table. Figure 1 illustrates a set of tables

that are semantically relevant to a query table about lead baseball

players playing in two different teams in the same season. With

this information, the betting company is able to understand the

performance of players and teams and is therefore better prepared

to offer bets to its customers. For example, the betting company can

learn from Table 1 in Figure 1 that baseball teams with Zambrano

and Cotts perform well against the Astros and that Cleveland is the

weakest team according to Table 3.

Example 1.1 and Figure 1 describe a sample of top-relevant tables

that are relevant even though they do not mention any baseball

players or seasons from the query. Moreover, tables ranked as top-1

and -2 (marked in the figure) cannot be retrieved by any keyword

search method, since they do not share any keyword match, despite

being the most relevant in the set. However, all the tables in that

example output are semantically relevant given that they contain

information describing baseball teams, baseball players, and various

statistics and relations involving them.

To enable a better understanding of the semantics of a dataset,

we have witnessed an increasing interest in matching the content

of a table with entities from an existing Knowledge Graph (KG) [2,

6, 16, 22]. KGs present information as a semantic graph connecting

both entities and concepts with semantic relationships.

Thus, given the importance of studying advanced methods to

support this type of search, it is necessary to compare existing

and future solutions across a fair and extensive set of benchmarks.

Recently, a few benchmark datasets have been proposed for the

task of table search [2, 6, 16, 17, 22, 36]. Among those, the most

relevant datasets are a dataset proposed to evaluate ad-hoc table

retrieval methods [6] and the WTR (its extension) developed also

for the task of Web table retrieval. Unfortunately, these datasets

suffer from a variety of limitations in terms of scope and quality:

(1) They do not provide out-of-the-box linking to an existing

KG for entities both in queries and tables and thus they are

not suited to properly test semantic QbE search methods.

(2) Furthermore, the datasets that come with relevance annota-

tions [6, 17, 36] offer a ground truth that is biased towards

exact-content-match methods due to the pre-filtering of the

results in their ground truth.

(3) Finally, they only provide a handful of queries for which

only a few results are marked as relevant, hence limiting the

opportunity to train and test machine learning models that

need substantial amounts of training data.

Therefore,we propose a new dataset, the Semantic Table Search corpus

(STSD)
1
that overcomes these limitations. In particular, we provide

the following contributions:

(1) We extend the commonly adopted WikiTable corpus from

2013 [2] and 2019 [3] with automatically extracted links to

DBpedia, resulting in 238K and 457K tables, respectively. For

the first time, we additionally construct a large set of 9K and

2K query tables from the 2013 and 2019 WikiTable corpus,

respectively for QbE table search.

(2) We extract ground truth relevance annotations for our set

(see Figure 1) using Wikipedia categories and navigational

links as relevance signals. Our ground truth relevance anno-

tations comprise 610K relevance scores across all 9K queries

for the 2013 WikiTable corpus and 958K relevance scores

across all 2K queries for the 2019 WikiTable corpus. The reli-

ability of our relevance annotations has been further verified

via a crowdsourced manual annotation process.

(3) We furthermore share the RDF2Vec embeddings (on Zen-

odo [8]) for all entities in the DBpedia snapshot we used.

To ease access and interoperability of our dataset, we publish our

STSD repository on GitHub, and we maintain the same table file

names as the original datasets from which it is derived. This allows

us to compare our STSD to other works that use a subset of the same

tables and to retrieve the original files as well. Our dataset is the

first that can enable an evaluation of existing semantic table search

methods that is not biased towards content overlap between queries

and tables (since we do not perform any content-based prefiltering)

and allows testing their scalability to large-scale repositories of tables

1
https://github.com/EDAO-Project/SemanticTableSearchDataset
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(with 2 to 3 orders of magnitude more queries and tables than other

existing datasets).

In this paper, we first present a more in-depth analysis of the use

cases for our dataset (Section 2), and then we discuss the limitations

of existing benchmarks (Section 3). Furthermore, we describe how

we built our test collection (Section 4). Finally, we evaluate our

test collection over two baselines designed to exploit the seman-

tic annotations present in our dataset and discuss new promising

research directions (Sections 5). We consider how our dataset can

shed more light into the successes and failures of semantic table

search methods sparking new insights that may help to advance

this important field. We conclude our paper in Section 6.

2 TASK DEFINITION
In semantic table search (STS), the task is to rank a set of top-𝑘 tables

in a corpus given an input query [36, 38]. The task that this resource

aims to benchmark is example-driven top-𝑘 semantic ranking. This

means that input queries are given as small tables containing in-

formation of interest organized in rows and columns. For example,

if a user wants to find tables describing baseball players, teams,

games, and statistics, the user can pose a table query containing

example baseball players and teams, such as in Figure 1. Therefore,

the ranking of tables is based not only on exact matches between

the query table and the corpus tables, but also on the semantic

similarities between entities. This necessitates access to semantic

information which can be achieved by referencing entities in KGs.

A KG is a directed labeled graph 𝐺=⟨N , E, _⟩, where nodes N
consist of entities, concepts, and their attributes and edges E are

labeled relationships between nodes. The nodes and edges are usu-

ally annotated with literals L by a mapping function _ : N∪E↦→L.

Given a reference KG, tables can be ranked based on the semantic

similarity of entities within tables. For example, the entities Mitch
Stetter and Micah Hoffpauir are not exact matches but have a

high semantic similarity when considering their set of entity types,

their attributes, or the distance from each other in the KG.

We can now define STS as follows:

Problem 1 (Semantic Table Search). Given a table corpus 𝐶

and a table query 𝑄 as input, both with mappings to entities from a

knowledge graph𝐺 , the Semantic Table Search task requires extracting

from 𝐶 a top-𝑘 ranked list of tables that are semantically relevant to

𝑄 according to a semantic relevance scoring function SemRel𝐺 (𝑄,𝑇 ).

Therefore, the answer to an STS example query table 𝑄 consists

of a top-𝑘 ranking of tables from the corpus 𝐶 . The query table

can be seen as a set of tuples. For this ranking to be effective, each

entity mention 𝑚 in a table 𝑇 ∈ 𝐶 is linked to a corresponding

entity 𝑒 ∈ 𝐺 , where 𝐺 is an instance of a reference KG. This entity

linking can be defined as the mapping function Φ:𝑀 ↦→N , where𝑀

is the set of entity mentions across 𝐶 and 𝑄 . Note that the entity

links in tables also allow our dataset to be used to benchmark the

performance of entity linkers.

Moreover, there are also parallels between our semantic table

search and document search. Standard document search frame-

works, such as those based on BM25 like Lucene, can be extended

with semantic weighing of query terms [30]. In this type of semantic

document search, however, only documents containing exact match-

ing are retrievable. Alternatively, another option is to identify the

concepts in the query and in the documents and then compute the

concept overlap to rank documents [11]. Also in this case, the search

paradigm tries to identify documents containing exact matches of

the keywords or entities present in the query.

3 LIMITATIONS OF EXISTING BENCHMARKS
Table searchmethods tackle a variety of problems, such as discovery

of joinable tables [40, 41], unionable tables [29], related tables [4, 33],

and augmentation search based on textual matches [35, 38]. In this

section, we survey existing methods and existing datasets to test

these methods. Our analysis reveals that, while recent work [15, 38]

has highlighted the need for semantic table search, existingmethods

disregarded the importance of semantic information provided by

KGs, as they focus on exact attribute/value overlap and use only

taxonomic KG relationships or metadata. Other methods focus on

matching tables to text queries relying on textual features in tables.

Thus, existing test collections are not sufficient to fully evaluate new

solutions for the challenging task of semantic table search.

3.1 Information Retrieval Methods
In IR, there exists a wide array of approaches designed for table

search and augmentation explicitly designed for Web tables [37] that

focus on matching the content of a table to a text query, e.g., key-

word queries describing the topics of interest. Thus, the relevance

score for a table is often based on table context (e.g., text in the same

web page, headings, captions), table content (i.e., overlaps among

cell values [40, 41]), and sometimes also on semantic relatedness

based on the taxonomy of column names [24]. Recently, the task

of ad-hoc table search [35, 37, 38] has also been considered, where

the provided query can be a small Web table or a subset of it. In

this case, the table query is treated as a complex text object, and

text embedding methods are used to estimate relevance. In practice,

they represent queries and tables in multiple vector spaces (both

discrete sparse and continuous dense vector representations) that

they refer to as semantic but are based on textual features only, while

completely ignoring actual semantic information provided by either

ontologies or KGs. Moreover, their performance is evaluated on a

needle-in-the-haystack setting, where a very specific user intent

is provided and a narrow list (less than 5) of relevant tables exists.

Furthermore, these methods always assume a strong presence of

textual information, which can be absent in many real cases.

Therefore, we find an important gap, highlighting the need to

test a new task where the query is an example of the data of interest,

and the goal is to find data that is semantically relevant but also

substantially extend or provide context to the query.

3.2 Data Management Methods
The database literature has also seen a lot of interest in the task of

table search. Existing approaches focused on Web tables [5] and

identified two types of related tables [33]: (1) Entity Complement,

where two tables are the result of two different sets of selection

predicates on the same source table, these two tables are hence

unionable; and (2) Schema Complement, where two tables are the

result of two distinct project operations on the same source table,
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Table 1: Characteristics of related test datasets. Type of tables: (Wt) Wikipedia Web tables, (P) tables from other Web pages, or
(O) Open Data; if it links to an open KG; the number (# Q) of queries contained, the number of ground truth (# GT) relevance
annotations for each query; Average size of the annotated tables; if it supports Query-by-Example (QbE).

Dataset Type KG # Q # Tables # GT Avg Size QbE
WikiTables [2] Wt (✔) - 1,652,771 - 10.9 -

WDC-EN [22] P+Wt (✔) - 50,820,165 - 5.5 -

GitTables [16] O (✔) - 871,411 - 136.8 -

NTCIR-16 [17] O ✗ 96 93,367 2,030 *115,586.5 ✗

SemSearch [36] Wt (✔) 60 2,932 3,120 15.4 ✗

SemSearch’21 [38] Wt (✔) 50 2,932 2,855 26.3 (✔)

WTR [6] P+Wt (✔) 60 6,629 6,949 6.1 ✗

STSD WT’13 (ours) Wt ✔ 9,296 238,038 640,467 25.1 ✔

STSD WT’19 (ours) Wt ✔ 2,560 457,714 958,214 24.9 ✔

these two tables are hence joinable. This distinction uses entity-

centric definitions, i.e., they assume a source table describing some

set of entities (products, countries, customers), and thus relevance

is determined by their ability to share exact values in a specific

column (for joining them) or they feature the same set of attributes

(for their union) [4, 7, 13].

More recently QbE approaches for joinability [40, 41] and union-

ability [29] that are not entity-centric have been developed to ex-

ploit approximate value overlap along with KGs and natural lan-

guage models. The use of these technologies allows for the extrac-

tion of semantic similarities of attributes. These have also been

generalized to consider relationship semantics and table semantics

using large language models [12, 19].

Different works on table search [23, 29, 42] also use some taxo-

nomic information (e.g., WebIsA and Freebase types) as reference

knowledge to determine if two sets of entities come from the same

set, or when attributes with different names are equivalent. Yet,

they do not fully exploit semantic resources, i.e., KGs. In particular,

a KG contains not only taxonomic information (instance, type, and

subclass relations), but it also contains attributes and inter-entity

relationship information that can help to determine relatedness in

a broader sense. Other approaches for related table search exploit

instead meta-data derived by static analysis of the usage of specific

tables in different programs (e.g., python notebooks) [39]. Kumar et

al. [21] proposed a set of rules to determine if avoiding performing

a join would be safe in a relational context, while in Shah et al. [34]

the rules of Kumar et al. [21] are applied to high-capacity classifiers

to test their validity. Other approaches to augmentation return a set

of related tables [4] where a relatedness search in data lakes is per-

formed, that identifies joins between tables containing overlapping

sets of entities [7, 13].

A framework called ARDA [7] has been proposed to also evalu-

ate the quality of the information obtained through augmentation.

ARDA works as a two-step algorithm. Firstly, it searches for join-

able tables and then prunes out irrelevant features using feature

selection algorithms. In particular, given a specific predictive model,

it takes as input a dataset and a data repository and outputs an

augmented dataset such that training the predictive model on this

augmented dataset results in improved performance. Thus, these

approaches mostly exploit value overlaps and co-occurrences while

using taxonomies and natural language models to extract semantic

similarities of attributes for schema alignment.

Linking tables to KGs also allows the consideration of non-taxonomic

relationships to estimate the relatedness of two tables. Therefore, a

benchmark dataset for the STS task should allow the testing of se-

mantic relatedness of generic tables in a data lake as required in

exploratory use cases. Yet, existing datasets do not offer ground

truth relevance judgments for such pairs of tables.

Therefore, our proposed STSD corpus supports the study of

methods that match relatedness beyond the concepts of joinable and

unionable tables, since tables can be relevant even when they do not

share any part of their data, e.g., none of the ground truth tables in

Figure 1 are joinable or unionable with the query table.

3.3 Existing Test Collections
Multiple table collections have been proposed to test different in-

formation retrieval and data management use cases. In Table 1, we

present their statistics, including the type of data they contain and

whether they provide ground truth relevance that can be useful to

test table search solutions. Some are large Web table collections

that are designed to test entity linking approaches, where entities

are usually linked directly to Wikipedia pages or a selected set

of DBpedia entities. This is the case of the WikiTables [2] dataset

and the tables extracted from the English WebDataCorpus (WDC-

EN) [22]. The more recent GitTables [16] are extracted from tabular

data published on GitHub, but is not linked to entities, instead some

columns are linked to entity types or relationships. Overall, these

datasets contain a large number of tables but no queries and no

ground truth relevance judgments. Moreover, their entity-linking

annotation is generally sparse, incomplete, and/or outdated.

Other datasets have been specifically designed for information

retrieval tasks. This is the case of the NTCIR-16 [17], the Sem-

Search [36], and the WTR [6] datasets. Yet, for these datasets, rele-

vance judgments are limited to keyword queries and queries are

not linked to entities. Moreover, the relevance judgments have been

obtained through human annotation. For this reason, while they

are derived from a large set of tables (e.g., 3M for WTR), the ac-

tual annotated tables and relevance judgments are limited to a few

thousand (6,629 in WTR), and the tables that are actually annotated

are usually small. Moreover, almost all of them do not support the

QbE use case, i.e., when the input is a portion of a table instead
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of a keyword query [6, 17, 36]. That is, users were not tasked to

provide a relevance judgment of a table compared to another table

as QbE requires. Furthermore, the entity linking in these tables

is very sparse (we estimate that in WTR more than half of the ta-

bles have less than 10 entities while in our STSD corpus, all tables

have at least 10). Therefore, most of the semantic information in

WTR comes from table headers and captions. Recently, the work

of SemSearch has been expanded to also include some tables as

queries (SemSearch’21 [38]). However, this dataset is not suitable

for training and testing advanced methods for the STS task, as its

queries are not linked to KG entities. Furthermore, only 50 queries

and few ground truth tables were annotated. These query tables

have an average entity coverage of only 25.4%, i.e., an average of

29.3 entities per table among an average of 116.2 query table cells.

Another important limitation of WTR, SemSearch, and Sem-

Search’21 is thatmany queries have few or no answer tablesmarked as

relevant. On average, 80.1% of the annotated tables in SemSearch’21

have been marked as irrelevant (i.e., assigned a ground truth score

of 0). For keyword queries in SemSearch, this number is 72.1% and

67.9% in WTR. Finally, both SemSearch [36] and WTR [6] dataset an-

notations have been extracted through a biased pooling mechanism,

which used the original keyword queries with BM25 to retrieve

a subset of tables, and only those tables have been evaluated by

human annotators for relevance. As we discuss in the next sections,

this favors text-based methods and fails to collect relevance judg-

ment on many other relevant tables. This means that any search

method tested on these collections will not be able to verify the

ability to encompass more expressive semantics. As an example,

a query table in SemSearch’21 describes ferry boats of the East

Frisian Islands. This query table has 1 annotated table with a non-

zero relevance score in SemSearch’21 while it has 27 tables marked

as relevant in our proposed STSD (using Wikipedia categories),

among which the one table annotated as relevant in SemSearch’21

is also found. The annotated table in SemSearch’21 lists East Frisian

Islands and sand flanks, and it has been assigned a low relevance

score in both ground truths. In the STSD ground truth, however, the

tables contain semantically relevant information, including a list of

the largest ferries in Europe and the Caledonian MacBrayne fleet.

Similarly, another query table describes athletes from Montana,

USA. This table has 7 annotated tables with a non-zero relevance

score in SemSearch’21 and 27 in STSD, with three tables appearing

in both ground truths, and in both being assigned the highest rele-

vance. All of the relevance annotated tables in SemSearch’21 are

assigned the highest relevance score. Among the relevance anno-

tated tables in our STSD dataset are tables describing information

such as famous people from Montana, USA, athletes from Georgia

Institute of Technology, and medalists from USA. Among these,

only one table has also been assigned a non-zero relevance score

in both datasets which is the highest relevance score. Finally, these

two SemSearch’21 queries are the only queries that can be mapped

to our queries in STSD. The remaining 48 SemSearch’21 queries

have instead very few entity mentions appearing in them, resulting

in their exclusion from our corpus. By selecting only those rows

and columns containing entity links, the queries become too small

to be sufficiently descriptive.

This comparison shows how important it is to offer a comple-

mentary set of tables and ground-truth relevance annotations since

all existing datasets do not offer a sufficiently large, diverse, and

annotated table corpus.

4 SEMANTIC TABLE SEARCH TEST CORPUS

Table 2: Benchmark statistics: # of tables (T), mean # of rows
(R), mean # of columns (C), mean # of ground truth tables
per query using WP categories (GT), and mean entity link
coverage (Cov).

Queries Data Lake Tables
T R C GT T R C Cov

WT’13 9,296 25.1 3.4 65.7 238,038 35.1 5.8 27.7%

WT’19 2,560 24.9 2.4 374.4 457,714 23.9 6.3 18.2%

The STSD corpus is extracted and annotated from tables in

Wikipedia pages (WP) from 2013 and 2019 [2, 3] via the following

steps: (1) linking tables cells that contain links to a corresponding

WP to DBpedia using the isPrimaryTopicOf property, (2) filtering
of tables to ensure a wide representation of entities and table sizes,

(3) extraction of a large and heterogeneous set of query tables, and

(4) construction of a ground truth relevance score for each query

table using ground truth meta-data from the original Wikipedia

pages.

4.1 Table Corpus
The STSD corpus is comprised of Wikipedia tables (WT) and is

annotated by linking cell values to DBpedia entities. Since many

cell values in the WT corpus contain links to WP pages (e.g., when

a cell contains the value “U.S.A.” that is linked to the corresponding

WP page), and given that DBpedia entities are linked to WP pages

via the isPrimaryTopicOf property, we match the cell to the corre-

sponding DBpedia entity via those links. Note that, if no WP links

is present, a state-of-the-art entity linker can be applied for this

task. Then, our STSD corpus is obtained by selecting from the 1.6M

WT tables in the original corpus (from a 2013 snapshot) those with

at least 10 unique DBpedia entities across their cell values. Perform-

ing this procedure results in 238,038 tables. In addition, for each

table, we also extract the set of Wikipedia categories and navigation

links from the WP page containing the table. Note that this infor-

mation is missing from the original WT corpus. We crawled it from

the current online Wikipedia. These are used to obtain our ground

truth relevance assessment as explained below. Following the same

procedure, we extracted tables and annotations from a 2019 snap-

shot [3] of 714,632 WT tables resulting in an additional 457,714

tables. Figures 2a and 2b show the table size distribution across the

2013 and 2019 corpora. Table 2 summarizes the characteristics of

our two STSD corpora from 2013 and 2019, as well as the entity

link coverage. Both WT tables from 2013 and 2019 show similar

characteristics regarding rows and columns. However, WT tables

from 2013 contain on average more DBpedia entity annotations

and are therefore semantically slightly more descriptive.
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Figure 2: Distribution of rows across tables in the corpus and rows, columns, and relevant tables across all query tables in STSD.

4.2 Query Corpus
Our set of query tables is generated by selecting one table from each

WP page. If a WP page contains more than one table, the table with

the largest number of entity mappings within a single row (called

horizontal entity mapping) is chosen. We keep only query tables

with a minimum horizontal entity mapping of at least 3 entities to

capture a sufficiently large schema. As an additional restriction to

improve the quality of our queries, we keep only query tables with

at least 10 rows. Furthermore, we keep only query tables with at

least one relevant (see below how relevance is established) table

from a different WP page in the ground truth than the page of the

query table itself. These restrictions ensure that the query tables

can be used to find other non-trivial relevant tables. Applying these

restrictions provides 9,296 query tables on our 2013 STSD corpus

and 2,560 query tables on our 2019 STSD corpus. Focusing on the

entities, the query tables can also be considered as a list of entity

tuples. Figures 2c and 2d show the distribution of the number of

rows per query, while Figures 2e and 2f show the distribution of

the number of columns (i.e., width) per query table.

4.3 Relevance Assessment
Our dataset is the first to provide a large-scale set of ground truth

relevance annotations for the query-by-example semantic table search

task. Our ground truth annotations are designed specifically for

the semantic exploratory search task and establish the relevance

of two tables that appear on two pages by comparing the set of

Wikipedia categories or navigation links (i.e., links to related WP

pages) those pages share. Thus, for each query-table pair, we pro-

vide two relevance judgments: the Jaccard similarity of Wikipedia

categories and the Jaccard similarity of navigational links of pages

from which the two tables were extracted. More specifically, we

provide continuous relevance scores ranging between zero (irrele-

vant) and one (highest relevance possible): if the Jaccard similarity

comparing either the pages or links of the query table and a given

table is above zero, then that table is considered as somehow rele-

vant to the query. Notice that the relevance score of a query table

to a table from the same WP page will always be one, since tables

from the same WP page share the same categories and navigation

links. To further improve the quality of the relevance assessments,

generic Wikipedia categories and navigation links (e.g., “Pages Un-

der Construction”, or “Living People”) were excluded as they do not

contain semantically useful information. Figures 2g and 2h show

the distribution of the number of tables annotated as relevant per

query table. It should be noted that WPs in a few cases suffer from

generic or small and specific sets of categories. For example, the

only WP category of 108th United States Congress is “108th United
States Congress” and the WP 2014 in amusement parks has the

generic types “Amusement parks by year” and “2014-related
lists”.

We evaluate the trustworthiness of our automatically established

ground truth using Wikipedia categories and navigation links by

performing a user study over 25 randomly chosen 5-tuples queries

(query table containing five tuples). For each query, we select 20

tables for human annotation which are split into four groups of

five tables: (1) tables retrieved by both semantic relevance search

and BM25 keyword search and annotated as relevant in our ground

truth, (2) tables retrieved only by semantic relevance search and

annotated as relevant in our ground truth, (3) tables retrieved by
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semantic relevance search but annotated as not relevant in our

ground truth, and (4) random tables not annotated as relevant in

our ground truth. Semantic relevance search is implemented as

a table search approach finding semantically relevant tables by

comparing the entities within the query and the tables. Pairs of

entities in the query and the table are compared in two alternative

ways: either (i) computing the Jaccard similarity of entity types

or (ii) computing the cosine similarity of entity embeddings. This

search method is described in greater detail in the Section 5. More

complex methods could also be designed, but we favored a simple

and easily explainable method for this experiment.

Given the query and answers described above, we performed

the user study on 12 users, with a background in data science and

data management. The users were tasked to annotate each query-

table pair with a relevance score in [1, 4], where 1 is “irrelevant”
and 4 is “very relevant”. We ensured each table is annotated by

three different participants and the final table annotation used is

determined by averaging the votes of the three annotators. We

computed the Kendall-W coefficient of concordance [14] of the

human annotators to measure the inter-annotator agreement. We

used Kendall-W instead of Kendall Tau [18] since it is more appro-

priate when comparing multiple annotators. We then obtained an

average of 0.87 per query, which shows a high agreement between

the human annotators. However, this measure requires the anno-

tations to be unique rankings of the tables per query. As this is

not the case in our user study, i.e., tables with the same annotation

score for a query are randomly assigned a ranking, Kendall-W can

provide an underestimation of the real agreement. Therefore, we

also compute Krippendorff’s Alpha [26], which can handle ordinal

input containing duplicates and multiple annotators. This score is

0.62, which once again shows a high inter-annotator agreement.

Once retrieved human relevance annotations for our sample, we

compared the ranking of the 20 tables for each query to the ground

truth ranking of the same tables. We employed Kendall Tau [18]

to measure the agreement between the automatically established

ground truth and the human annotators. Since the relevance scores

we produced in our automatic relevance computation are in the

range 0-1, we quantized these values into the 1-4 range of relevance

scores obtained in our user study. The quantization was obtained

by computing thresholds for the scores as the 1st quartile, the me-

dian, and the 3rd quartile. Thus, comparing the quantized relevance

scores computed in our dataset to the annotators’ relevance scores,

we obtained an average Kendall Tau value of 0.47, which shows a

high agreement between the human annotators and the automati-

cally established relevance scores.

5 SEMANTIC TABLE SEARCH EVALUATION
In this section, we show how the STSD corpus allows testing the

limitations of table search approaches for the QbE search task.

Specifically, using STSD 2013, we evaluate the recall of 5 baselines:

one based on BM25, one based on dense representation learning,

one based on a large language model for table union search, and

two based on semantic information that are also purely content-

based and do not use any other table information other than the

cell values.

BM25 [32] is a well-established keyword search algorithm in

information retrieval that has also been used as a baseline method

in numerous table search works [35, 36, 38]. To use BM25 to search

over our corpus, we first convert our query tables into keyword

queries. This is done by extracting the text field from each cell

and using that as the keyword (e.g., the entity “dbpedia:Boston”

from a query table will be converted into the keyword “Boston”).

Thus, every query and every candidate table is then treated as a

text document composed of all its cell values. Metadata is left out,

and tables are indexed for full-text search with BM25 to answer

keyword queries in a purely content-based manner.

TURL [9] is a deep-learning model for Table Representation

which we adapt for the dense table search task. That is, queries and

tables are represented as dense vectors. Specifically, we aggregate

all contextualized vector representations in each table to construct

an embedding for each query and table using the pre-trained model

of TURL. To rank the tables, we use cosine similarity between the

aggregated query and table representations.

Starmie [12] is a representation learning approach applying

a large language model to perform semantic matching of column

representations for table union search. Starmie is able to capture

rich contextual semantic information within tables using trained

column encoders.

Jaccard of Entity Types (STST) performs Semantic Table Search

by measuring the similarity between pairs of entities in the query

and the table. Given two entities (e.g., from DBpedia), we define

their relevance score as the Jaccard similarity between the two sets

of their types (e.g., mapped via rdf:type in DBpedia). Then, to

estimate the similarity between the query table and the candidate

table, we aggregate the Jaccard similarity across all their entities. To

do so, we first align each column in the query tuple to the column

in the candidate table maximizing the Jaccard similarity of their

types in that column. We generate such an alignment using the

Hungarian algorithm [20] so that the Jaccard of their DBpedia types

is maximized per column. Once the best alignment is identified the

relevance score for a candidate table can be computed by averaging

the Jaccard similarities of all query tuples with each row in the

candidate table.

Embedding Similarity (STSE) is an alternative to the above

Jaccard of types, that tries to better exploit the semantic infor-

mation encoded in the structure of the knowledge graph. We use

RDF2Vec [31] to construct 200-dimensional node embedding vec-

tors for each entity (which we also make available on Zenodo [8]).

The entity similarity is then the normalized (shifted in [0, 1]) cosine
similarity, between the query entities and entities in the candidate

table. Then, we align the query and target table columns as done

with STST to compute an aggregate score.

Experimental Results. We sample 50 query tables from our

STSD corpus, consisting of 1 and 5 tuples. We choose this subset of

50 queries, as evaluating the complete set of 9K queries would be

too time-consuming. The queries have an average of 65.7 and 374.4

relevant tables in the ground truth in the 2013 and 2019 snapshots

(some more than 400), respectively, as listed in Table 2. Table 3

shows recall across our baselines at two different query sizes (i.e.,

number of tuples) for 𝑘=100 and 200.

For computing recall, we compute the median ground truth

relevance score and use that as the relevance threshold. Then, when
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Table 3: Average recall at top-100 and -200 for STST, STSE,
BM25, TURL, and Starmie.

Top-100
STST STSE BM25 TURL Starmie

1-Tuple 0.263 0.267 0.278 0.002 0.033

5-Tuples 0.159 0.145 0.166 0.002 0.042

Top-200
1-Tuple 0.292 0.331 0.320 0.006 0.033

5-Tuples 0.099 0.095 0.105 0.003 0.042

Table 4: AverageNDCGat top-10 for STST, STSE, BM25, TURL,
and Starmie.

Top-10
STST STSE BM25 TURL Starmie

1-Tuple 0.534 0.543 0.573 0.005 0.102

5-Tuples 0.595 0.628 0.660 0.004 0.126

Table 5: Average NDCG at top-10 for STST and STSE on the
2019 WT snapshot.

Top-10
STST STSE

1-Tuple 0.546 0.549

5-Tuples 0.612 0.617
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Figure 3: Recall at top-100 and -200 for STST, STSE, BM25,
TURL, and Starmie.

measuring recall, we consider only tables with a ground truth score

above that value as relevant. This offers a conservative estimation

of the performance of these baselines and also shows the versatility

of our dataset.

We observe that STST, STSE, and BM25 generally achieve similar

recall (Table 3). However, STST and STSE retrieve almost completely

disjoint sets of tables compared to BM25. Specifically, for 𝑘=100,

1-tuple 5-tuples

N
D
C
G

Figure 4: NDCG at top-10 for STST, STSE, BM25, TURL, and
Starmie.

1-tuple 5-tuples

N
D
C
G

Figure 5: NDCG at top-10 for STST and STSE on the WT’19.

we measure that the result sets of the two methods differ by a me-

dian of 66 and up to 100 results. This is because BM25 is based

on keyword search and is therefore not able to retrieve ground

truth tables that do not contain any keyword matches to the query.

Therefore, BM25 leaves out a portion of tables that are semantically

relevant to the query. This also highlights how biased the existing

text collections are, since their relevance judgment is given only

for top-100 queries returned by BM25 (called pooling [6]) result-

ing in the omission of a large set of tables that are relevant but

not included in their test collections and thus their ground truth.

However, a fraction of our ground truth relevant tables do contain

keyword matches and are therefore retrievable with BM25, and

hence, BM25 can compete with STS if the fraction is large enough.

The performance of BM25 correlates to this fraction, and its per-

formance will therefore decrease as this fraction decreases. We

similarly plot the recall in Figure 3. Although, the average recall is

quite low, as reported in Table 3, STST, STSE, and BM25 are all able

to perform well on some queries. Even Starmie performs similarly

to STST, STSE, and BM25 in a few instances. Interestingly, even

though 5-tuples queries can be more informative as they contain

more entities overall, STST, STSE, and BM25 perform worse on

recall compared to the 1-tuple queries. This can be partly attributed

due to the overall smaller number of tables retrieved as relevant

since alignment between a query with more tuples and a candidate

table can lead to overspecialization, blocking out some tables that

would have been relevant.

Table 4 and Figure 4 present the ranking quality across our

baselines using NDCG (Normalized Discounted Cumulative Gain)

for top-10 results. TURL performs poorly in both recall (Table 3) and
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NDCG (Table 4) using 1- and 5-tuples queries. This is due to TURL

not being designed for semantic table search but rather as a table

understanding approach. However, when TURL is given the entire

source table, i.e., the entire WT from which 1- and 5-tuples queries

are extracted, as input query, it can reach an NDCG of 0.488. Starmie

also does not perform well in both recall and NDCG. This is due to

Starmie being a union search approach, meaning that it is designed

to only find a subset of tables that are relevant in semantic tables

search: namely, those tables that are unionable with the query table.

Figure 4 shows a varying performance of STST, STSE, and BM25,

and once again Starmie can only compete with these baselines in a

few instances. We also perform an experiment to verify the quality

of the 2019 WT snapshot. We present the ranking quality of STST

and STSE on this snapshot in Table 5 and Figure 5. Although this

snapshot has a comparatively lower entity-link coverage among the

tables (18.2% compared to 27.7% for the 2013 snapshot), semantic

table search with STST and STSE still performs nearly identically

to the WT tables from the 2013 snapshot. This shows that the more

recent snapshot of the WT tables from the 2019 snapshot is also of

high semantic quality, despite its lower entity link coverage.

6 CONCLUSION
While table search tasks have attracted substantial attention, exist-

ing benchmark datasets are still limited in quality and dimension

of the set of tables, queries, and relevance annotations they offer.

The STSD corpus we propose provides instead queries and ground

truth relevance judgments that go beyond simple keyword match-

ing. The high quality of this resource is assured by the presence

of Wikipedia links and annotations which are assigned by human

editors. Furthermore, we performed a user study that shows that

the established ground truth aligns well with human relevance

annotations. Thanks to this dataset, we perform an exploratory

evaluation of a few table search methods and compare them to two

naïve baselines that try to exploit the information encoded in a KG.

Our experimental results point towards an unexplored potential

hidden in the semantic annotations when tables are linked (even

just partially) to a reference KG. This shows the necessity to study

methods for table search that can better take into account semantic

similarity. While in this work we only present very simple baselines,

in the future, we foresee the need for and plan to design advanced

tables search algorithms that can complement the effectiveness of

keyword search approaches based on content to more advanced

semantic-aware techniques that are also equally scalable as key-

word search. Furthermore, we plan to design a similar resource that

goes beyond Web tables and extends our corpus to a test collection

that includes also larger Open Data tables.

Availability. We have published the following resources in our

STSD GitHub repository
2
:

• Scripts, we release scripts to reproduce our results and extract

the Wikipedia categories and navigation links.

• Table Corpus and Queries, we release our 2013 corpus of 238K
tables and 9K table-queries (represented as both entity tuples and

text blobs) along with the entity linking to a recent snapshot of

DBpedia, as well as theWikipedia categories and navigation links

extracted for each page. We also publish our 2019 corpus of 457K

2
https://github.com/EDAO-Project/SemanticTableSearchDataset

tables and 2K table queries, including the Wikipedia categories

and navigation links. We maintain the same WT file names, so it

is possible to retrieve the original files as well.

• Relevance Assessment, we release the relevance assessments

we collected for each query table based on both categories and

navigation links from Wikipedia comprising 610K relevance

scores across all queries and corpus tables from the 2013 snapshot,

as well as 958K relevance scores on the 2019 snapshot.

• User Study, we release our user study of our automatically

established relevance assessments for a total of 500 query-table

pairs from the 2013 snapshot.

• RDF2Vec Embeddings over DBpedia, along with this resource

we also share the KG graph embedding [8] for all entities in the

DBpedia snapshot we used.
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