Table Overlap Estimation through Graph Embeddings

FRANCESCO PUGNALONI, Hasso Plattner Institute, University of Potsdam, Germany
LUCA ZECCHINI, University of Modena and Reggio Emilia, Italy

MATTEO PAGANELLI, University of Modena and Reggio Emilia, Italy

MATTEQO LISSANDRINI, University of Verona, Italy

FELIX NAUMANN, Hasso Plattner Institute, University of Potsdam, Germany
GIOVANNI SIMONINI, University of Modena and Reggio Emilia, Italy

Discovering duplicate or high-overlapping tables in table collections is a crucial task for eliminating redundant
information, detecting inconsistencies in the evolution of a table across its multiple versions produced over
time, and identifying related tables. Candidate duplicate or related tables to support this task can be identified
via the estimation of the largest table overlap. Unfortunately, current solutions for finding it present serious
scalability issues for heavy workloads: Sloth, the state-of-the-art framework for its estimation, requires more
than three days of machine time for computing 100k table overlaps.

In this paper, we introduce ARMADILLO, an approach based on graph neural networks that learns table
embeddings whose cosine similarity approximates the overlap ratio between tables, i.e., the ratio between the
area of their largest table overlap and the area of the smaller table in the pair. We also introduce two new
annotated datasets based on GitTables and a Wikipedia table corpus containing 1.32 million table pairs overall
labeled with their overlap. Evaluating the performance of ARMADILLO on these datasets, we observed that it is
able to calculate overlaps between pairs of tables several times faster than the state-of-the-art method while
maintaining a good quality in approximating the exact result.

CCS Concepts: » Information systems — Information retrieval; Information integration; Deduplication.

Additional Key Words and Phrases: table representation learning, graph neural networks, data lakes, web
tables, table overlap, table matching

ACM Reference Format:

Francesco Pugnaloni, Luca Zecchini, Matteo Paganelli, Matteo Lissandrini, Felix Naumann, and Giovanni
Simonini. 2025. Table Overlap Estimation through Graph Embeddings. Proc. ACM Manag. Data 3, 3 (SIGMOD),
Article 228 (June 2025), 25 pages. https://doi.org/10.1145/3725365

1 Estimating table overlap

Tables are one of the most common formats used in data lakes and Web sources for organizing
information that refers to a common schema [39]. For instance, a large amount of tabular data
can be found in GitHub, which contains more than 10 million tables stored as CSV files [25], and
Wikipedia, where more than 3 million HTML tables have been created throughout its history (2, 5].

In these large table corpora, it is frequent to find pairs of tables that share the same content
across multiple cells, i.e., overlapping tables. This overlap, depending on its size and shape, can
be a signal of table relatedness. For instance, a vertical overlap spanning several rows across a

Authors’ Contact Information: Francesco Pugnaloni, Hasso Plattner Institute, University of Potsdam, Germany, francesco.
pugnaloni@hpi.de; Luca Zecchini, University of Modena and Reggio Emilia, Italy, luca.zecchini@unimore.it; Matteo
Paganelli, University of Modena and Reggio Emilia, Italy, matteo.paganelli@unimore.it; Matteo Lissandrini, University
of Verona, Italy, matteo.lissandrini@univr.it; Felix Naumann, Hasso Plattner Institute, University of Potsdam, Germany,
felix. naumann@hpi.de; Giovanni Simonini, University of Modena and Reggio Emilia, Italy, giovanni.simonini@unimore.it.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).

ACM 2836-6573/2025/6-ART228

https://doi.org/10.1145/3725365

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 228. Publication date: June 2025.

HTTPS://ORCID.ORG/0009-0003-0300-6686
HTTPS://ORCID.ORG/0000-0002-4856-0838
HTTPS://ORCID.ORG/0000-0001-8119-895X
HTTPS://ORCID.ORG/0000-0001-7922-5998
HTTPS://ORCID.ORG/0000-0002-4483-1389
HTTPS://ORCID.ORG/0000-0002-3466-509X
https://doi.org/10.1145/3725365
https://orcid.org/0009-0003-0300-6686
https://orcid.org/0000-0002-4856-0838
https://orcid.org/0000-0001-8119-895X
https://orcid.org/0000-0001-8119-895X
https://orcid.org/0000-0001-7922-5998
https://orcid.org/0000-0002-4483-1389
https://orcid.org/0000-0002-3466-509X
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3725365

228:2 Francesco Pugnaloni et al.

R Monument City Country Year S Nation | Population City
ry TV Tower Berlin Germany | 1965-1969 Sq England 8,866,180 London
ry Big Ben London England 1843-1869 S, Italy 2752908 Rome
r3 St. Davids - England 1915-1921 S3 England 1348 St.Davids
ry Colosseum Rome Italy 70-80 Sy Unknown 52 Hum
rs AquaClaudia Rome Unknown 52 S5 Croatia Unknown Rastoke
re Well of Life Zagreb Croatia Unknown Sg Germany | 3.755.251 Berlin

Fig. 1. Pair of tables that overlap in different ways. ({“Unknown”,“52”),(“Croatia”, “Unknown”))
has area four and is the largest overlap obtainable without reordering rows and columns, while
((“Berlin”, “Germany”), (“Rome”, “Italy”), (“London”, “England”)) is the real largest overlap, it has area six
and is obtained through a permutation of rows and columns. The overlap ratio is 6/18 (largest overlap area /
area of the smaller table).

few columns may denote a pair of joinable tables. Similarly, a horizontal overlap can be a sign
of unionability. Further, an overlap covering many rows and columns might represent a case of
duplicate tables, table containment, or different versions of the same table [3].

Detecting overlaps is a challenging task for traditional set-based methods for data discovery, as it
requires considering the alignment of cell values in a table and the structure of the tables themselves.
To fill this gap, the concept of largest overlap, i.e., the largest common rectangular subtable existing
between two tables under any row and column reordering, was recently introduced [54]. We present
an illustrative example of largest overlap in Figure 1.

Identifying tables for which the largest overlap exceeds a certain area and/or presents a specific
shape finds application in multiple real-world scenarios, from the detection of largely overlapping
tables in a data lake, e.g., for subsequent operations of change propagation [3] or elimination of
redundant information, to more specific tasks, e.g., the detection of copying dependencies across
multiple sources [35] or the automated discovery of multi-column joins [54]. In addition, table
overlap not only serves user-facing applications, but can also be used as a filtering or blocking
method for downstream tasks, such as table reclamation [16].

In practice, all proposed use cases fall under two main scenarios: (i) table matching, i.e., retrieving
all the clusters of related tables in a corpus, and (ii) table querying, i.e., given a query table, identifying
a set of related tables in a corpus by building a ranking or using a similarity threshold. Since the first
scenario requires comparing all possible pairs, it has a quadratic complexity, and even when working
with datasets of a few thousand elements, a large number of comparisons needs to be performed.
The second, instead, is linear with respect to the number of tables in the corpus. However, it can be
equally challenging if computed in a brute-force manner, indeed Sloth [54], the only prior approach
available for estimating the largest table overlap, takes more than two hours of machine time to
compare 1 table with a data lake of 10K tables. Thus, in this paper, we analyze the problem of
efficiently approximating the maximum normalized table overlap, referring to it as overlap ratio.

1.1 Table overlap ratio

We define the overlap ratio between two tables by extending the definition of the largest table
overlap [54]. The intuition is to identify the sub-tables of maximum area, in terms of number of
cells, that are shared between the two tables and normalize their area with respect to the area of
the smaller table.

Given two tables R and S defined on the schemas X and Y respectively, we first define an attribute
mapping M as the bijective function that links a subset of columns of the first table X3 CX to another
set Y3 CY of the second table. Each mapping determines a table overlap Oy, which corresponds

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 228. Publication date: June 2025.

Table Overlap Estimation through Graph Embeddings 228:3

to the sub-table obtained from the intersection under bag semantics of the tuples in the columns
linked by the mapping. We call the overlap area for the mapping M the table area of Oy, i.e., the
number of cells contained in the table overlap generated by the mapping M. Among all the possible
mappings, we are interested in identifying the ones with the maximum overlap area.

ExaMPLE 1 (LARGEST TABLE OVERLAP). Given the tables R and S in Figure 1 it is possible to
identify several attribute mappings. Just to list a few, the mapping M :(Year)— (Population) gener-
ates an overlap area of two, i.e., only two cells are shared between the two columns. The mapping
M,:(City, Country)—{City, Nation) instead, represents a mapping of area six and since there are no
other mappings that generate a larger area, it is a largest table overlap.

Formally, we call O(R, S) the set of table overlaps determined by all possible attribute mappings
between R and S. We instead identify with O*(R,S) € O(R,S) the set of table overlaps with the
largest overlap area, and their respective areas with A*(R, S).

Definition 1.1 (Overlap ratio). Let R, Y be tables defined on the schemas X, Y, Ag and Ag their
table areas, and A*(R, S) their largest overlap area. We call

A*(R,S)

O(R.S) = min(Ag, As)

€ [0,1]
overlap ratio between the tables R and Y.

ExaMPpLE 2 (OVERLAP RATIO). Table R and S have an area of 6 X 4 and 6 X 3 respectively, and their
largest table overlap, deriving from M,, is 6. Their overlap ratio is O(R, S) = m = % =0.33.

1.2 Efficient overlap ratio approximation

Although Sloth [54] provides a method to compute the largest overlap between pairs of tables, it
has serious scalability issues. A possible approach to solving this problem is to consider methods
that further approximate this calculation, such as considering tables as flattened sets of values and
adapting a set-wise similarity measure for this purpose. The Jaccard Similarity [27] is generally
used to compare textual data and defines the similarity of sets of elements as the ratio between
the cardinality of their intersection and their union. It can be used to approximate the overlap
ratio by finding the intersection under set semantics of values in a pair of tables and dividing their
cardinality by the cardinality of their union. Since this approach uses the set semantics, it does not
take into account the repetition of values in the tables. A solution to the problem is computing
the Jaccard similarity under bag semantics, i.e., considering tables as bags of values that allow
repetitions and dividing the cardinality of the bag intersection by the cardinality of the bag union.
Since the number of values in the bag intersection is at most equal to the sum of the sizes of the
two bags, it can predict at most a value of 0.5, hence, it cannot be used as it is. Two solutions are
(1) scaling its result to the right interval by multiplying its prediction by two or (2) dividing the
cardinality of the bag intersection by the size of the smaller bag.

Nonetheless, none of these approaches consider the structure of the tables and thus they fail when
the table pairs have more than one common sub-table. In particular, the last method assumes that
all values in the bag intersection are part of the same largest common subtable, always predicting
an overlap greater or equal to the real one.

EXAMPLE 3 (APPROXIMATE OVERLAP RATIO). For the tables in Figure 1, the Jaccard similarity would
predict an overlap of% = 0.37 under set semantics, an overlap of 2 - % = 0.57 under scaled bag
semantics, and % = 0.67 under bag semantics normalized by the smaller table area. The true value of

6

the overlap ratio between the tables is 1; = 0.33, and is overestimated by all methods.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 228. Publication date: June 2025.

228:4 Francesco Pugnaloni et al.

0

7

Graph 5
|:l‘> Embedding ’:‘> 12 ’:‘\>
o Overlap |::>
Computation Ratio

3
||

Fig. 2. Overlap Computation Pipeline

c1]c2 Graph
ri|A|B I::>Constru1:tion|::>

rn|B|c

C3[C4|C5

r3 | B |D|C Graph
r‘ BN E ks ’:l‘>|::>

To address the challenge of effectively and efficiently estimating the largest table overlap between
two tables, we introduce ARMADILLO, an approach that uses an intermediate graph representation
and graph neural networks to generate table embeddings that encode not only information about
the content of the tables but also about their structure—to capture the information about cell
values appearing together in rows and columns. Thus, thanks to this vectorial representation, table
representations can be compared efficiently to obtain an estimation of the overlap ratio between
the original tables.

We also introduce two new datasets based on GitTables and a Wikipedia table corpus, containing
1.32 million table pairs overall labeled with their overlap, containing respectively 700k pairs of
tables and 620k pairs of tables labeled with the value of their overlap ratio as computed by Sloth [54].
We further split this data into train/valid/test sets by (i) making sure to remove common tables
between training and inference pairs, and (ii) balancing the distribution of the overlap ratio into
ten equally spaced bins in the interval [0, 1]. In summary, our main contributions are:

e The ArMmADILLO approach, which introduces the first GNN architecture for an efficient and
effective approximation of the overlap ratio between tables!

e An extensive evaluation of our approach to the scenarios of table matching and table querying,
highlighting its strengths and weaknesses

e Two open-source annotated datasets based on GitTables and a Wikipedia table corpus,
comprising a total of 1.32 million table pairs with their true overlap ratio

2 ARMADILLO

ARMADILLO is a novel framework for the approximation of the overlap ratio between tables that
exploits table embeddings generated through intermediate graph representations of tabular data.
Given a pair of tables, the process of predicting their overlap consists of three major steps that are
shown in Figure 2:

(1) Graph construction: the input tables are mapped to graphs, whose nodes and edges represent
tabular elements and their structural relationships

(2) Graph embedding: the graphs are fed into a graph neural network (GNN) that computes graph
embeddings, i.e., embeddings of the graph representation of the table contents

(3) Overlap computation: the graph embeddings are compared to predict the overlap ratio between
the tables

In the following, we describe these steps, the implementation choices, and their motivations.

! Armadillos are cousins of Sloths, with a top speed of 48km/h, as opposed to 1km/h.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 228. Publication date: June 2025.

Table Overlap Estimation through Graph Embeddings 228:5

2.1 Graph construction

To determine the overlap ratio of a pair of tables, three key pieces of information are needed: which
cells contain the same values, the areas of the tables, and the structure of the tables, i.e., which
columns and rows the cells belong to. This information should be considered regardless of the
order of the rows and columns in the input tables.

For intermediate representations of tables, two main approaches have been explored in the
literature: (i) serializing tables into plain text or (ii) building graph-based representations. While the
first approach cannot exhaustively encode the table structure, previous works [8, 20, 34] suggest
that representing tables as graphs when generating embeddings of schema elements improves
the expressivity of the final result. The intuition of these approaches is representing the schema
elements and their relationships as nodes and edges, e.g., nodes can refer to cells, columns, and
rows, while edges model relationships between them. Starting from this general scheme, several
variants can be considered. Li et al. [34] map cells into one or more nodes in the graph depending
on the number of tokens contained in the value, e.g., the number of words for sentences. Cappuzzo
et al. [8] collapse different occurrences of the same value in a table into a single node. Ge et al. [20]
do not use a specific node for the columns and insert all column-related information in the edges
that link row and cell nodes.

None of these structures can be directly applied to our task. Dividing multi-token cells into
multiple nodes makes it harder to identify exact matching cells. Compressing multiple repetitions
of the same value across multiple cells into a single node limits the information on the multiplicity
of values and the area of the table, since the overlap ratio is computed as a ratio of two areas
this information plays an important role in estimating it. Representations that insert all column-
related information in the edges that connect row and value nodes proved to perform well on
entity matching tasks, but they can produce a not fully connected graph, limiting the expressive
capabilities of embedding methods that exploit paths between nodes to propagate signals, e.g.,
graph neural networks.

ArMADILLO builds for each table a graph with the structure shown in Figure 2. It has three
categories of nodes, one for each tabular element: column nodes, row nodes, and cell nodes. There is
one distinct node for every row, column, and cell in the table. The graph is tripartite and undirected,
hence, two categories of edges link cell nodes with the nodes associated with the rows and columns
to which they belong. The topology of the graph depends solely on the number of rows and columns
in the table. Hence, it provides information about the area of the table and its structure, but it does
not take the actual values inside the cells into account. To provide information about the content
of the table, each node is associated with an embedding. In this way, ARMADILLO generates a graph
containing all the information to calculate the overlap ratio listed at the beginning of Section 2.1.

Node embeddings. Node embeddings need to represent different properties depending on the
category of nodes. Embeddings of cell nodes must provide information about their values, encoding
whether two cells have the same content or not. Word embedding approaches, e.g., word2vec [38],
despite being time-efficient, are vulnerable to out-of-vocabulary tokens that cause the loss of
information about the content of the cells. N-grams-based approaches, e.g., Fasttext [7], manage to
reduce the out-of-vocabulary occurrences by generating embeddings of sub-words, but they cannot
handle numerical data well enough. Transformer-based approaches, e.g., BERT [11], exploit more
advanced tokenization techniques, e.g., WordPiece [49], solving the out-of-vocabulary problems
also when working with numerical data, but they are computationally more demanding and slower,
see Section 4.2.

ArMADILLO generates the initial embeddings of the cell nodes by hashing their values with the
well-known SHA-256 algorithm. Since this hashing approach expects textual data as input, all the

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 228. Publication date: June 2025.

228:6 Francesco Pugnaloni et al.

numerical values are converted to strings. As the NaN values are considered when determining the
largest overlap, they are converted to the string null and hashed like the other values. Since the
output of the SHA-256 algorithm is a hexadecimal string composed of 64 characters, i.e., a sequence
of 32 numbers that range from 0 to 255, the initial node embeddings have 32 dimensions.

This hashing approach is faster than transformer-based methods and, in the absence of collisions,
generates the same representation for two cell nodes only if they contain the same value. As for
the purpose of computing the overlap ratio the semantics of the values inside the cells is irrelevant,
their hashes contain all the necessary information.

The initial embeddings of row and column nodes are generated by aggregating the embeddings
of the cells that they contain. Minimum and maximum functions are not suitable aggregation
functions for this purpose, as they do not provide information about all the cells within the row or
column. The sum function offers a global representation of rows and columns but does not ensure
embeddings with values from 0 to 255, generating a representation inconsistent with the one used
for the cell nodes. To aggregate the cell nodes, ARMADILLO uses the mean aggregation function,
which provides global information and generates embeddings with values in the correct range.

Graph construction. Algorithm 1 summarizes the sequence of operations that ARMADILLO per-
forms to convert a table into a graph. Graphs are represented by two matrices containing the node
embeddings and the edges in the graph, respectively. The node embedding matrix associates each
node with an index and an embedding, and the edges are stored as pairs of indexes-values.

Given a table as input, ARMADILLO iterates over its rows and columns (lines 5-17). Each cell is
converted to text and hashed by the hash_string function to obtain the cell embedding (lines 7-12).
The cell node is then inserted into the graph and connected with the nodes related to the row
and column it belongs to (lines 13-15). Furthermore, a reference to the cell embedding is stored in
two intermediate variables, namely rows_to_values and columns_to_values, to subsequently have
access to all the embeddings related to a given row or column (lines 16-17). Finally, ARMADILLO
generates the embeddings of the columns and rows respectively by calculating the average of the
embeddings of the related cells (lines 18-19).

As ArmADILLO must process all cells in the table, one by one, to construct the graph, the
computational complexity grows linearly with the area of the table. If r is the number of rows and
¢ the number of columns, the computational complexity of the algorithm grows linearly with the
number of cells in the table, or more accurately O(r - ¢).

2.2 Graph embedding

The graph described in Section 2.1 is only an intermediate representation of the table, and needs
further processing to become the final one. ARMADILLO carries out this operation in two steps. First,
it refines the initial node embeddings using the connections between nodes in the graph. Then,
it aggregates the node embeddings into a single final embedding, i.e., a graph embedding, which
contains all the necessary information for approximating the overlap ratio.

The intuition of the embedding refinement process is to modify the embedding of a node by
regarding its neighborhood in the graph. Given how the graph is constructed, this operation allows
the framework to encode knowledge about the structure and content of the tables. We considered
two possible approaches for this operation. The first one adapts EmbD]I, a framework proposed by
Cappuzzo et al. [8], which uses node2vec [21], and the second one relies on graph neural networks.
Our experiments showed that, when it comes to working with large collections of tables, EmbDI is
too slow, for this reason, ARMADILLO uses the second method (see Section 3.3 and Section 4 for
further details). For the aggregation method, we apply a readout layer based on mean pooling [50].

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 228. Publication date: June 2025.

Table Overlap Estimation through Graph Embeddings 228:7

Algorithm 1: Graph Construction Algorithm
Input: A table

edges « init_edges()

embeddings « init_node_embeddings()
rows_to_values « init_rows_values_mappings()

[

columns_to_values « init_columns_values_mappings()
foreach r € table.rows() do
foreach c € table.columns() do
v « table.get_cell_value(r,c)
if is_number(v) then
‘ v « str(v)
if is_na(v) then
‘ 0 «— “null”
v_emb « hash_string(v)
embeddings.add_embedding(v_emb)
edges.add_edge(r,v)
edges.add_edge(c,v)
rows_to_values([r].add(v)
17 columns_to_values[c].add(v)
18 embeddings.compute_column_embeddings(columns_to_values, strateqy = Mean)

O 0 N G e w N

R v S~ T S~ S SO
A A W N . O

19 embeddings.compute_row_embeddings(rows_to_values, strateqy = Mean)
Output: embeddings, edges

Why graph neural networks? Node embedding approaches based on node2vec do not process
graphs natively and exploit random walks to generate training sentences for a skip-gram model,
finding node embeddings that are based on the topology of the graphs without considering possible
features associated with the nodes. Graph neural networks are specifically designed to process
graphs and require as input for every node a feature vector that contains information about it.
Furthermore, GNNs are faster than word2vec since they do not need to train a skip-gram model
from scratch for inference, a requirement that node2vec has instead.

In our framework we use GraphSAGE, a GNN architecture proposed by Hamilton et al. [23].
During our preliminary experiments, we defined lists of candidate values for the model hyperpa-
rameters, e.g., the number of layers and the embedding size, and we trained several versions of
GraphSAGE. In ARMADILLO we use the configuration that performed the best. Given as input an
edge list and a feature matrix, i.e., the embedding matrix, GraphSAGE is able to fine-tune the initial
embeddings using information taken from the nodes’ neighborhood, the refined node embeddings
have 300 dimensions and their values are not limited to the interval [0,255]. In any case, ARMADILLO
is modular, so one may change its configuration at will and retrain it to use different GNN models
or a different number of dimensions for the final embeddings.

In the next paragraph, we present the concept of receptive field and explain how it influenced
the choice of the number of layers.

Receptive field. The receptive field of a node is defined as the set of nodes used to generate
its embedding. The cardinality of this set is mostly influenced by the number of layers of the
network, specifically, if there is one layer, the embedding of a node is computed by aggregating the
embeddings of the nodes at distance 1, if there are two layers, also nodes at distance 2, and so on.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 228. Publication date: June 2025.

228:8 Francesco Pugnaloni et al.

Number of layers: 1 l ‘Number of layers: 2| |Number of layers: 3| ‘Number of layers: 4

Fig. 3. Receptive field of a cell

A low number of layers would limit the amount of information that a node can receive from
its neighbors. On the other hand, a high number of layers risks increasing the receptive field too
much and cause over-smoothing: “the exponential convergence of suitable similarity measures on
the node features” [41]. It is an effect that reduces the expressivity of the node embeddings.

Figure 3 visualizes the effect of an increasing number of layers on the receptive field by showing
which schema elements influence the embedding of a cell node. When there is only one layer, the
embedding of a cell node is computed by aggregating the embeddings of its row and its column,
with two layers, the embeddings of the values in the same row or column are included, with three
layers, also the perimeter of the table, i.e., all the row and column nodes, is included, and with four
layers, the aggregation involves all the nodes in the graph.

When embedding row and column nodes, the situation is slightly different: with three layers,
their receptive field covers the entire graph, but the overall pattern is similar. Our initial experiments
suggested that using three layers provides the best performance for our use case.

2.3 Overlap computation and training

In this section, we explain (i) the similarity measure that we use to compare the embeddings and
(ii) an overview of the training approach.

Cosine similarity. By Generating table embeddings, we map the problem of measuring a sim-
ilarity between tables, to measure a similarity between vectors. Since the overlap ratio itself is
a ratio between two areas, it is not suitable to compare vectors. A common choice for compar-
ing embeddings is the cosine similarity [8, 55], but since it has values between -1 and 1 and the
overlap ratio ranges from 0 to 1, it cannot be used as it is. For this reason, ARMADILLO uses a
thresholded variant of the cosine similarity, where all the negative values of cosine similarity
become 0, mapping the domain in the correct interval. Formally, let Eq, E; be table embeddings,
Opredicted(E1, Ez) = max (0, cos_sim(Ey, Ez)) € [0,1] is their predicted table overlap ratio.

Training approach. ARMADILLO needs to learn the weights of the graph neural network to be
functional. This process requires a dataset of triples containing pairs of tables and their overlap
ratio. We provide two labeled datasets that are balanced by overlap intervals. We divide both into
train, test, and validation without repetition of tables between the three sets. We further describe
their structure and the approach used to build them in Section 3.2.

The training loop is composed of four steps that repeat for each training sample. The first step is
the graph construction, where ARMADILLO maps pairs of input tables into graphs with the structure
proposed in Section 2.1. For optimization reasons, ARMADILLO prebuilds graphs for all the tables in
the dataset and in practice, this step only retrieves the correct pair of graphs from a dictionary. The
second step is the embedding generation. Here, the model uses the GNN model followed by the
aggregation layer to convert the graphs into table embeddings, as explained in Section 2.2. Keep in
mind that even though during the training the embeddings are computed for pairs of tables, each
table embedding is independent of the other, and each table has the same embedding, regardless of

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 228. Publication date: June 2025.

Table Overlap Estimation through Graph Embeddings 228:9

Table 1. Stats for 256 834 GitTables and 128 620 WikiTables.

Dataset # cols # rows area # distinct # missing

GitTables mean 13.03 151.69 1351.85 520.80 118.56

min 1.00 1.00 2.00 1.00 0.00
max 698.00 19254 99856 99558 98908
WikiTables mean 7.92 9.60 74.57 36.58 5.68
min 1.00 1.00 1.00 1.00 0.00
max 722 854 4350 1785 1573

which is the table it is compared to. The third step is the loss computation. We considered using two
different losses in this step: the Mean Squared Error (MSE) and the Mean Absolute Error (MAE).
Our initial experiments suggested that MAE performed slightly better than MSE. Furthermore, its
results are more interpretable. The fourth and last step is the backpropagation of the loss and the
update of weights.

We trained two main models on two different domains of tables: Armadillo-G, trained on tables
extracted from GitHub, and Armadillo-W, trained on web tables extracted from Wikipedia. We
provide details on and links to both datasets in Section 3. We used 100 epochs of training for both
of them, the first one needed almost 30 hours of training time, while the second one, due to the
smaller tables, needed almost 7 hours in total.

3 Experimental setup

In this section, we describe the experimental setup by providing details on the datasets, baselines,
and testing scenarios used in the evaluation. Since we are analyzing the task of estimating the
overlap ratio between pairs of tables, we reorganized our benchmarks to obtain pairs of tables
labeled with their overlap. This represents the ground truth for our evaluation. Then, we used
these datasets to train two versions of ARMADILLO and to generate testing data for two evaluation
scenarios (1) table matching, i.e., determining the overlap between pairs of tables, and (2) table
querying, i.e., given a query table, identifying overlapping tables inside a table repository. We
open-sourced both the datasets and the code used in this evaluation in a GitHub repository?.

3.1 Datasets

GitTables. GitTables [25] contains 1 million tables extracted from GitHub. It was created to provide a
benchmark containing tables that are structurally different from Web tables and resemble relational
database tables. After removing empty and corrupted tables, we extracted a subset of approximately
256k tables from the original dataset. We report their statistics in Table 1. This dataset is diverse in
composition, on average each table has 152 rows, 13 columns, and an average area of almost 1.4k
cells, while some outlier tables can reach up to 19k rows and 698 columns with a maximum area
of up to almost 100k cells. Further, repetitions of values inside the tables are relatively frequent:
the average number of distinct values in a table is 520, which is almost half of the average area.
Missing values, i.e., empty cells, are also frequent, and on average, there are 118 empty cells per
table, i.e., approximately 10% of the area.

WikiTables. We denote as WikiTables a set of almost 2.13 million tables extracted from a dataset
containing the different versions of the English Wikipedia tables collected throughout their his-
tory [4, 5]. In particular, we consider the tables from the latest snapshot available in the dataset,

2Link to the repository containing the artifacts produced.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 228. Publication date: June 2025.

https://github.com/HPI-Information-Systems/Armadillo.git

228:10 Francesco Pugnaloni et al.

dated September 1, 2019. After filtering out ill-formed and empty tables, we extracted a subset out
of the dataset, for which we provide statistics in Table 1. Each table contains on average 10 rows,
8 columns, and has an area of 75 cells, while there are outlier tables reaching more than 800 rows,
700 columns, and an area of more than 4k. Further, the average area of the tables is less than 10% of
the average area of tables in GitTables. Repetitions of values inside the tables are relatively frequent:
the average number of distinct values in a table is 37, while the average table area is 75. Similarly
to GitTables, the average number of missing values per table is less than 10% of the average table
area. Nonetheless, there are tables containing up to more than 1k missing values.

3.2 Ground truth generation

We divided both GitTables and WikiTables into three disjoint sets of tables with a 3:1:1 ratio,
containing respectively tables for the training, validation, and test sets. This was done to (1) prevent
data leakages, i.e., to avoid inserting in the test and validation sets tables that are already included
in the training set, and (2) evaluate the ability of the approach to generalize to unseen tables.
Secondly, for each set of tables, we identified pairs of tables with a uniform distribution of their
overlap, i.e., we wanted to obtain an equal amount of pairs with high overlap ratio and low overlap
ratio. To achieve this, we used a procedure that combines the LSH banding technique [33] with a
random sampling method. The intuition is to use LSH to obtain pairs of tables with medium-high
overlap and random sampling to select pairs of tables that share little information®. In particular,
we performed LSH by varying the number of bands. We considered 8, 16, and 32 bands, determining
estimated Jaccard similarity thresholds of about 0.88, 0.71, and 0.42, respectively. Then, we used
Sloth [54] to compute the overlap for these pairs of tables. We then divided the pairs into ten
equally spaced bins by overlap ratio, i.e., from 0 to 1 with a step of 0.1, and selected from each of
them 50k pairs in the training set and up to 10k pairs in the validation and test sets. The outputs of
this procedure were two collections of table pairs, balanced with respect to their overlap ratio. The
GitTables triple dataset contains 500k training triples and 100k testing and validation triples, while
the WikiTables triple dataset contains 500k training triples and 60k test and validation triples. For
our evaluation, we trained and tested both within each dataset and also across the two datasets.

3.3 Baselines

We compare the performances of ARMADILLO with twelve other methods, eight of those based
on table representation learning (TRL). For each method, we evaluate both the runtime and the
overlap estimation effectiveness of the model.

The TRL baselines adapt existing sentence, graph, or tabular elements embedding methods to
generate table embeddings whose cosine similarity approximates the overlap ratio between pairs
of tables. We repurposed each model for generating one single table embedding instead of, e.g., one
embedding for each cell. Since the cosine similarity between these table embeddings is not granted
to approximate the overlap ratio between tables, for each model we trained a scaling head, i.e., a
one-layer network that, given an embedding of a table, produces a new embedding with the desired
properties. Each scaling head is trained on the same train, test, and validation data as ARMADILLO
for a total of one hundred epochs.

Non TRL based. The first non-TRL baseline we compare against is Sloth [54], the state-of-the-art
method for identifying the largest overlap between tables. Sloth is an approximate method that
has been proven to produce results that are exact or very close to exact. Thus, we also use Sloth’s
predictions as ground truth and compare to it only in terms of efficiency.

3The use of random sampling is justified by the fact that the distribution of the table pair similarity is more shifted towards
low similarity values.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 228. Publication date: June 2025.

Table Overlap Estimation through Graph Embeddings 228:11

The second baseline is the Jaccard similarity [27], a popular text similarity measure that
can be repurposed for the overlap ratio estimation scenario. In this setting, a table is considered
as a flattened set of values, i.e., a collection of the distinct values contained into its cells. More
formally, let R, Y be two tables and S(R), S(Y) the sets of the values contained into their cells. We
call Jaccard(R,Y) = %

A bag is an unordered set of elements that allows repetitions, the Jaccard similarity under bag
semantics is computed by dividing the cardinality of the intersection of two bags by the cardinality
of their union and has values between 0 and 0.5. To keep track of the multiplicity of values the third
approach (Jaccard-B-U) considers tables as flattened bags and scales Jaccard’s result in the right
interval by multiplying it by two. More formally, let R, Y be two tables and B(R), B(Y) the bags
of the values contained into their cells. We call Jaccard-B-U(R,Y) = 2 - % the Jaccard
similarity under bag semantics between tables R and Y.

The fourth one is another adaptation of the Jaccard similarity under bag semantics that normalizes
the set intersection dividing it by the number of cells of the smaller table. We refer to it as Jaccard-
B-S. More formally, let R, Y be two tables and B(R), B(Y) the bags of the values contained into
their cells. We call Jaccard-B-S(R, Y) = %
normalized by the smaller table area between the tables R and Y.

the Jaccard similarity between tables R and Y.

the Jaccard similarity under bag semantics

Sentence embedding based. State-of-the-art table representation learning baselines use adaptations
of two sentence embedding models: BERT [11] and RoBERTa [36]. Both models, given an input
tokenized sentence, generate context-aware embeddings of the tokens. We developed three pairs of
embedding models that follow different approaches for generating table embeddings.

The first two models are BERT-R and RoBERTa-R, given an input table, they generate a
sentence for each row by concatenating all their values and separating them with commas. Then,
for each row, they generate token embeddings and average them to obtain a row embedding. Finally,
they find the table embedding by averaging the row embeddings.

The models in the second pair are BERT-T and RoBERTa-T. Given an input table, they generate
a sentence for each row in the same way as the previous two models. Then, they concatenate the
row sentences using the newline character as separator to obtain a single sentence. Finally, they
generate token embeddings for the tokens inside the table sentence and average them to obtain the
table embedding.

The models in the third pair are BERT-T-N and RoBERTa-T-N. They follow the same embedding
procedure as the models in the second pair but, before converting the table into a sentence, they
perform a noising operation on all its values to measure the impact of the domain knowledge of the
models on the embedding quality. The noising is performed by substituting the value of each cell
with its hashed value obtained using the SHA-256 algorithm.

While it would be possible to generate one sentence for each cell value and then aggregate
them into a final embedding, we excluded this baseline because, after initial investigation, we
determined that (1) the embedding generation was extremely slow and (2) our experiments suggest
that processing the entire table at once outperforms processing its components separately.

Cell and entity embedding based. TURL [10] is a table representation method that, given a parsed
table, is able to provide embeddings of its components. We used the cell-filling version of TURL [10]
to build a baseline that we call TURL-T. The model, given an input table, first, uses TURL to
generate an embedding for each cell and distinct entity inside the table, then, averages these
embeddings to obtain a table embedding.

Graph embedding based. EmbDI [8] exploits an intermediate graph representation and an adap-
tation of node2vec [21] to generate embeddings of rows, columns, and cells of pairs of tables. We

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 228. Publication date: June 2025.

228:12 Francesco Pugnaloni et al.

used it to develop our final baseline: EmbDI-T. The model, given a pair of tables, uses EmbDI to
generate embeddings of their elements, and then, generates the table embeddings by averaging
them. Differently from all the other embedding approaches, the embedding of a table changes if
it is compared to two different tables, hence, while using this approach, there is no advantage in
pre-computing the embeddings of the tables, limiting its usefulness in a real-world scenario.

3.4 Testing scenarios

We compare ARMADILLO with the competitors in two scenarios. The first concerns table matching,
i.e., calculating the overlap ratio between each pair of tables in a given collection. The second is
table querying, where the goal is identifying inside a repository tables that overlap with a given
query table.

These scenarios test the effectiveness of the models in two different ways, by measuring their
overall capabilities while approximating the overlap ratio and evaluating their ability to correctly
identify the tables with the highest overlap.

For both scenarios, we also evaluate the efficiency of the approaches, by measuring the time
needed to calculate the overlap ratio between a single pair of tables and the time needed to answer
a query. We provide more details for each of these scenarios below.

Table matching. We consider the pairs of tables included in the test sets of the analyzed datasets.
For each pair of tables, we calculate the overlap ratio with the considered approaches and measure
the time necessary to carry out this operation. For ARMADILLO and its TRL competitors, we also
apply a cross-domain evaluation by analyzing their performance when trained on WikiTables and
tested on GitTables, and vice versa. This allows us to understand the generalization capabilities of
the approaches to different domains.

Table querying. We simulate this scenario by considering 100 query tables and a collection of 10k
tables. The choice of these dimensions, as discussed in Section 4.2.2, is motivated by the time
needed for Sloth to execute: it required a total time of more than one week to complete the task on
a single dataset. The query tables and the collection are extracted from the GitTables dataset by
random sampling to simulate a real-world scenario, taking care to not select tables already seen by
ArMADILLO during its training or validation.

We also included a different querying scenario: the table reclamation [16]. Given a query table,
it aims to identify a set of generating tables inside a data lake to reconstruct the query table by
performing both data discovery and integration. Since Gen-T [16], the state-of-the-art framework
for table reclamation, does not scale well with large amounts of data, we propose ARMADILLO as a
possible blocking method to reduce the number of candidate generating tables inside a data lake for
a query table. In our experiments, we used a data lake composed of the tables inside the WikiTables
dataset and the 32 data lake-tables inside the TP-TR small benchmark [16], the query table set is
composed of the 26 query tables of TP-TR small.

4 Experiments

In the following, we first study the effectiveness of ARMADILLO in approximating the overlap ratio
and then its efficiency.

ARMADILLO is implemented in Python 3.11.3 and its code is publicly available on GitHub. Tables
are stored as CSV files divided into folders. Our experiments were performed on a server machine
equipped with a AMD EPYC 7702P CPU with 64 cores @2-3.35GHz, two GPUs, one NVIDIA Quadro
RTX A6000 with 48 GB of VRAM and one NVIDIA Quadro RTX 5000 with 16 GB of VRAM, and
512 GB of RAM, running Ubuntu 20.04.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 228. Publication date: June 2025.

https://github.com/HPI-Information-Systems/Armadillo.git

Table Overlap Estimation through Graph Embeddings 228:13

m Sloth ® BERTT
¢ Armadillo BERT-T-N
¢ Armadillo-Inference <« ROBERTa-R
® Jaccard <« ROBERTa-T
® Jaccard-B-U RoBERTa-T-N
Jaccard-B-S A TURLT
® BERT-R % EmbDI-T
_.04
3 x
—
z E 0.3
E_Q 0.2 L A
< - «
= %01 « ol
s ¢
=0.0 | |
10! 102 103 104 10°
=10 | |
g
S %o
@.Q
[GRELIK:] [J) a
O <« 4« A
2., ¢
Zo”
<
=06
102 103 104 108
Runtime (s)

Fig. 4. Tradeoff between effectiveness and efficiency of the models in the two scenarios. Both charts report
the total runtime (in log scale) on the X-axis and the MAE or the NDCG score on the Y-axis. The MAE refers
to WikiTables’ results. Armadillo-inference refers to ARMADILLO’s runtime when the table embeddings are
already available.

Tables 2 and 3 summarize the results obtained by ARMADILLO and the baselines in the task
of table matching. The first one shows the performance of the TRL-based baselines, while the
second one focuses on the non-TRL ones. Table 4 reports the performance of all models in the table
querying scenario. Finally, Figure 4 provides a visualization of the tradeoff between effectiveness
and efficiency of ARMADILLO and the baselines in both scenarios. In the following sections, we will
discuss the results in detail.

4.1 Effectiveness

We analyze how well ARMADILLO performs on the task of predicting the overlap ratio between
tables, in comparison to the ground truth, by analyzing its performances when performing the
tasks of table matching, in Section 4.1.1, and table querying, in Section 4.1.2.

4.1.1 Table matching. To understand how well ARMADILLO and its competitors approximate the
overlap ratio between pairs of tables, we report the mean absolute error (MAE) of their predictions
computed using as ground truth the test sets of the GitTables and WikiTables triple datasets. To
analyze the performance of ARMADILLO and its TRL competitors on different domains, we also
perform a cross-domain evaluation by reporting the MAE when the models are trained on GitTables
and evaluated on WikiTables and vice versa. In Table 2, the columns MAE Git-Git and MAE Wiki-
Wiki refer to the MAE of the models trained on GitTables and evaluated on GitTables and trained
on WikiTables and evaluated on WikiTables respectively, while MAE Git-Wiki MAE Wiki-Git refer
to the cross-domain evaluation, i.e., trained on GitTables and evaluated on WikiTables and trained
on WikiTables and evaluated on GitTables respectively. Figure 5 contains five box plots that show
how the absolute error (AE) of ARMADILLO and its best-performing competitors varies across the

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 228. Publication date: June 2025.

228:14 Francesco Pugnaloni et al.

Table 2. Experimental results for the TRL models introduced in Section 3.3 in the table matching scenario. In
the column names, the suffixes Git and Wiki identify the dataset that the column refers to, while Git-Git,
Git-Wiki, Wiki-Wiki, and Wiki-Git refer to models trained on GitTables and evaluated on GitTables, trained
on GitTables and Evaluated on WikiTables, and so on. The total time refers to the sum of the embedding time
and the inference time.

Total Total Embedding Embedding Inference Inference MAE MAE MAE MAE

Model Time Time Time Time Time Time Git Git Wiki Wiki

Git Wiki Git Wiki Git Wiki Git Wiki Wiki Git
Sloth 80h:03m 15h:15m Os 0s 80h:03m 15h:15m 0.000 0.000 0.000 0.000
EmbDI-T - 19h:33m - 19h:33m - 10s - - 0.339 -
TURL-T 135h:33m 58m:51s 135h:23m 53m:00s Im:48s 5m:51s 0.326 0.367 0.199 0.388
BERT-R 52h:47m 2h:32m 52h:36m 2h:32m 18s 11s 0.240 0.363 0.115 0.395
BERT-T 5h:32m 26m:11s 5h:21m 26m:00s 18s 11s 0.113 0.295 0.092 0.294
BERT-T-N 42h:25m 2h:30m 42h:15m 2h:30m 18s 11s 0.172 0.354 0.208 0.284
RoBERTa-R 54h:34m 2h:34m 54h:23m 2h:34m 18s 11s 0.197 0.349 0.144 0.392
RoBERTa-T 3h:45m 26m:11s 3h:34m 26m:00s 18s 11s 0.094 0.309 0.096 0.298
RoBERTa-T-N 6h:34m 37m:11s 6h:24m 37m:00s 18s 11s 0.177 0.417 0.190 0.428
Armadillo 0h:28m 1m:37s 0h:28m 1m:30s 11s 7s 0.064 0.214 0.068 0.246

Table 3. Experimental results for the non-TRL models introduced in Section 3.3 in the table matching scenario.

Model Total time-Git Total time-Wiki MAE-Git MAE-Wiki

Sloth 80h:03m 15h:15m 0.000 0.000
Jaccard 29s 6s 0.146 0.220
Jaccard-B-U 1h:26m 11.85s 0.163 0.230
Jaccard-B-S 1h:26m 11.85s 0.165 0.270
Armadillo 0h:28m 1m:37s 0.064 0.068

Table 4. Experimental results for the models introduced in Section 3.3 in the table querying scenario.

Model Total time Inference time NDCG@10 NDCG@ 1000
Sloth 171h:10m 171h:10m 1.00 1.00
Jaccard 3m:56s 3m:56s 0.81 0.71
Jaccard-B-U 6h:23m 6h:23m 0.81 0.70
Jaccard-B-S 6h:23m 6h:23m 0.78 0.80
TURL-T 6h:6m 1h:36m 0.77 0.65
BERT-R 4h:23m 2m:02s 0.77 0.64
BERT-T 1h:58m 2m:05s 0.77 0.68
BERT-T-N 3h:26m 2m:06s 0.66 0.61
RoBERTa-R 4h:25m 2m:05s 0.77 0.62
RoBERTa-T 1h:51m 2m:05s 0.77 0.65
RoBERTa-T-N 1h:57m 2m:05s 0.66 0.57
Armadillo 8m:59s 1m:54s 0.73 0.64

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 228. Publication date: June 2025.

Table Overlap Estimation through Graph Embeddings 228:15

datasets, there, the MAE is indicated with a green dotted line and its value is reported above it. The
upper chart in Figure 4 reports with a dashed horizontal line the MAE of ArmaDILLO, showing
intuitively that our model provides a lower MAE than the competitors.

1.0 1.0
0.8 0.8
0.6 0.6
w w
< <
0.4 0.4
0.2 0.2
0.0 0.0
Armadillo Armadillo Jaccard RoBERTa RoBERTa Armadillo Armadillo Jaccard RoBERTa RoBERTa
w T-G W G w T-G W
(a) Absolute error on GitTables. (b) Absolute error on WikiTables.

Fig. 5. Absolute error distribution of ARMADILLO, Jaccard similarity, and RoBERTa-T in approximating the
overlap ratio calculated by Sloth [54]. The mean absolute error of the models is reported in green. The letters
G and W identify the training dataset of the model.

On WikiTables we observe that ARMADILLO, in its domain-native version, obtains a MAE of
0.068, which is the best result. BERT-T and RoBERTa-T have a MAE of 0.092 and 0.096 respectively,
performing not only better than BERT-R and RoBERTa-R, which have a MAE of 0.115 and 0.144,
but also better than more resource-demanding models, i.e., EmbDI-T and TURL-T, which have a
MAE of 0.339 and 0.199. A limitation of the BERT family models is that when working with noised
data their performances drop significantly; indeed, BERT-T-N and RoBERTa-T-N have a MAE of
0.208 and 0.190. An explanation for this behavior is that their embeddings’ quality relies on their
knowledge of the table domain, e.g., Wikipedia is one of the training sources of BERT.

Regarding the non-TRL competitors, the Jaccard similarity produces the best results, with a MAE
of 0.220 compared to a value of 0.230 for the Jaccard-B-U, and a MAE of 0.270 for the Jaccard-B-S.

The cross-domain evaluation highlights the limitations of ARMADILLO’s architecture and the
TRL competitors in general when used in a domain drastically different from the training one. The
version of ARMADILLO trained on GitTables has a MAE of 0.214, which is similar to the MAE of the
Jaccard similarity, while BERT-T and RoBERTa-T have a MAE of 0.295 and 0.309 and all the other
TRL models have a MAE greater than 0.349.

On GitTables, the domain-native version of ARMADILLO is still the best with a MAE of 0.064,
while the performances of BERT-R, TURL-T, RoBERTa-R, and BERT-T decrease, with MAEs of 0.240,
0.326, 0.197, and 0.113. On the other end, the performances of the Jaccard similarity, Jaccard-B-U,
Jaccard-B-S, and RoBERTa-T, get better, with MAEs of 0.146, 0.163, 0.165, and 0.094.

The cross-domain evaluation has a different outcome, indeed, the versions of ARMADILLO, BERT-
T, and RoBERTa-T trained on WikiTables have MAEs of 0.246, 0.294, and 0.298, performing worse
than the Jaccard similarity and, for the model of the BERT family, comparably with BERT-T-N. An
explanation for this result is that since the GitTables triple dataset contains a larger number of
distinct tables than the WikiTables triple dataset and its tables are larger in size, the models are
able to learn more generic information that proves useful in the cross-domain scenario. The other
TRL models all have an MAE close to 0.4.

In Figure 6 we analyze how the MAE varies across pairs of tables with different overlap ratios.
To carry out this evaluation we divided the samples in the test sets into 10 equally populated bins
and measured the MAE of each bin. Figure 6a reports such results for GitTables and considers bins
of 10k pairs, while Figure 6b does the same for WikiTables using bins of 6k pairs.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 228. Publication date: June 2025.

228:16 Francesco Pugnaloni et al.

mmm Armadillo-G mm Jaccard s RoBERTa-T-W mmm Armadillo-G mm Jaccard mmm ROBERTa-T-W
Armadillo-W mmm ROBERTa-T-G Armadillo-W mmm ROBERTa-T-G
0.5- 0.5 -
0.4- 0.4-
2£03- 2 03-
= =
0.2- 0.2-
3 o ol || |I (| | | I| |||I||I II||| |II
AT NRML AR U K o0 o0k ol ok e ke Wl 111
[0.0, [0.1, [0.2, [0.3, [0.4, [0.5, [0.6, [0.7, [0.8, [0.9, [0.0, [0.1, [0.2, [0.3, [0.4, [0.5, [0.6, [0.7, [0.8, [0.9,
0.1] 0.2] 0.3] 0.4] 0.5] 0.6] 0.7] 0.8] 0.9] 1.0] 0.1] 0.2] 0.3] 0.4] 0.5] 0.6] 0.7] 0.8] 0.9] 1.0]
Correct Label Range Correct Label Range
(a) MAE per overlap interval on GitTables. (b) MAE per overlap interval on WikiTables.

Fig. 6. Distribution of ARMADILLO’s and related baselines’ mean absolute error (MAE) across pairs of tables
with different overlap ratios. The letters G and W identify the training dataset of the model.

Analyzing the results on the two datasets, we can observe that the native version of ARMADILLO’s
error distribution is rather uniform across the bins, having similar performance regardless of the
characteristics of the table pairs, which can have a low overlap in the cells as well as a high overlap.
The only exception is the last bin, which contains highly overlapping table pairs. There the results
are more precise for all the models, highlighting a bias in predicting very high overlaps, indeed, as
shown in Figure 5, in very few cases all of the models get the results completely wrong, predicting
a high overlap where there is almost none. ROBERTa-T follows a trend similar to ARMADILLO in
both of the datasets, while we can observe that the Jaccard similarity, especially on WikiTables,
tends to overestimate the overlaps.

In the cross-domain scenario, the ARMADILLO and RoBERTa-T versions trained on the WikiTables
and evaluated on GitTables tend to overestimate the overlap. On WikiTables the results are slightly
different, indeed, ARMADILLO performs better than the Jaccard similarity and has a more uniform
MAE distribution between the bins. RoOBERTa-T, instead, follows a trend similar to the Jaccard.

Regarding the relationship between the MAE of ARMADILLO and the areas of the tables, similarly
to what we did for the true overlap ratio, we grouped the samples in the test sets in 10 bins by area
ratio, i.e., the ratio between the area of the smaller table in the pair and the larger one. We observed
that in both datasets ARMADILLO tends to perform better for high values of area ratio, i.e., when the
tables in the pairs have similar sizes. This result is justified by the area ratio distribution of the
pairs in the test datasets, indeed, more than half of them have an area ratio between 0.9 and 1.

As a final note, although rather variable errors exist for all approaches, as can be seen in Figure 5,
ArMaDILLO produces the smallest interquartile variance, demonstrating its robustness to different
table characteristics.

4.1.2 Table querying. In this section, we analyze how well ARmADILLO performs when compared
with the baseline approaches in a table querying scenario, i.e., finding the top k most similar tables
in a collection with respect to a user query. In our experiments, we used a query set composed of
100 tables and a collection of 10k tables extracted from GitTables, none of these tables were used
during the training and validation of the models.

To measure the performances, we used the NDCG (Normalized Discounted Cumulative Gain)
score [28], a metric with values between 0 and 1 that measures how well a recommendation system
is ranking the top k elements of a set with respect to the ideal ranking,.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 228. Publication date: June 2025.

Table Overlap Estimation through Graph Embeddings 228:17

mmm Armadillo mmm Jaccard-B-S s ROBERTa-T

mmw Jaccard mmm RoBERTa-R s TURL-T
E .
3 § 06-
u 0 4-
0 2-
0.0-
100 1000 10k

Fig. 7. NDCG@k score for increasing values of k. The TRL models were trained on GitTables.

In Figure 7, we show the results of this experiment by visualizing values of k that are powers of
ten, i.e., 10°,101,10%,10%, and 10%. In Table 4, we report the values obtained with k = 10! and k = 10°.

Both Figure 7 and Table 4 show that the TRL models have worse performances than the Jaccard-
based ones, indeed, even though these methods are not aware of the structure of the tables, many
cases of highly overlapping tables are just duplicate tables or table containments, and for both
these categories of relationships, the structure awareness is less relevant than for smaller values of
overlap. Furthermore, TRL models are trained to minimize the AE error on a single prediction, and
even though small overlap differences between different pairs are important in a ranking scenario,
they may be overlooked during training in favor of minimizing the larger ones.

In the table reclamation scenario, we measured the average of reduction ratio (RR) and pair
completeness (PC) [37] across all the set of candidate generating tables obtained filtering out tables
with an overlap ratio with the query table lower than a specified threshold. We observed that the
best results are obtained using thresholds of 0.1 and 0.2, which have RRs of 0.54 and 0.77 and PCs
of 0.71 and 0.50 respectively. More extreme results are obtained by using thresholds of 0.01 and 0.4,
with RRs of 0.31 and 0.98 and PCs of 0.93 and 0.26.

4.2 Efficiency

We analyze how fast ARMADILLO is in the task of predicting the overlap ratio between tables by
analyzing its performances when performing the tasks of table matching, in Section 4.2.1, and table
querying, in Section 4.2.2.

4.2.1 Table matching. In this section, we provide evaluations that are complementary to the ones
of Section 4.1.1 by analyzing the efficiency of ARMADILLO in calculating the overlap ratio between
pairs of tables. In Table 2, the fourth and fifth columns report the time needed by ARmADILLO and its
TRL competitors to embed all the tables that appear in the test set of the GitTables and WikiTables
triple datasets. The sixth and the seventh columns report the time needed by the TRL models to
compute the overlap ratio when the embeddings are already available, i.e., their inference time.
Finally, the second and third columns report the Total time required by the models to compute the
overlaps, i.e., the sum of their embedding and inference time. Table 3 reports the results for the
non-TRL competitors, since they have no embedding time, it contains only the total time.

As also highlighted by the vertical dotted lines in the topmost chart of Figure 4, on both datasets,
ARMADILLO is considerably faster than the TRL competitors, needing less than thirty minutes for
GitTables and less than two minutes for WikiTables. Both BERT-T and RoBERTa-T, the fastest of
the baselines, needed more than three hours for embedding GitTables and almost thirty minutes for
WikiTables, their noised versions, i.e., BERT-T-N and RoBERTa-T-N, probably due to the different

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 228. Publication date: June 2025.

228:18 Francesco Pugnaloni et al.

tokenization of the noised cell values, were slower, needing more than two hours and a bit less
than one hour to embed the tables of WikiTables. BERT-R and RoBERTa-R needed more than fifty
hours for GitTables and more than two and a half hours for WikiTables. TURL-T, even though it
needed less than one hour to process WikiTables, proved not to scale well with large table sizes
and needed more than five days for GitTables. Finally, EmbDI-T needed almost one day to generate
the embeddings of WikiTables, which is more than the time needed by Sloth to compute all of the
overlaps from scratch.

The fifth and sixth columns of Table 2 report the inference time needed by ArRmMADILLO and its
competitors to compute the actual table overlaps. For ARMADILLO, this time refers to the computation
of the cosine similarity and requires less than seven seconds for WikiTables and less than twelve for
GitTables. For the other TRL models, the inference phase requires fine tuning the table embeddings
through the scaling head and computing their cosine similarity, this operation required around
ten seconds on WikiTables and slightly less than twenty seconds on GitTables for each one of
the TRL competitors. The only exception is TURL-T, which required additional operations for
the embedding fine tuning for a total of around five minutes on WikiTables and ten minutes on
GitTables. Regarding the non-TRL competitors, they compute the overlaps from scratch and have
different inference times. Sloth needed a bit more than fifteen hours for WikiTables and more than
80 hours for GitTables, while Jaccard-B-U and Jaccard-B-S needed less than twelve seconds and one
and a half hours for WikiTables and GitTables respectively. Finally, the standard Jaccard similarity,
needing less than thirty seconds to process GitTables and around six for WikiTables, has the lower
total time of all the models, which is also comparable to ARMADILLO’s inference time.

Figure 8 presents the results of a workload test to evaluate the cumulative runtime of the models
while predicting the overlap ratios of the pairs in the test set of WikiTables. The x-axis reports the
number of overlaps computed and the y-axis, the current cumulative runtime. The chart contains
one line for each model and since there are a few models considerably slower than others, it contains
in the top left corner a zoom on the fastest models to help the visualization. This test represents a
sort of online usage of the models where it is not possible to apply any optimization, e.g., exploiting
pre-computed table embeddings or computing more overlaps in parallel, where all the tables are
assumed to be new, i.e., they have never been encountered before and for each pair, the models
have to find new table embeddings from scratch and compute their similarity.

At first impact, it is clear that all of the models except EmbDI are several times faster than Sloth,
the black line. A second consideration is that the lines do not intersect, i.e., the faster models’
cumulative runtime is consistently lower than Sloth’s. Looking into the zoomed area, RoBERTa-R
is the slowest of the faster models, followed by TURL. Then, RoBERTa-T, and finally, Armadillo and
the Jaccard similarity, which we recall needed less than one minute to compute all of the overlaps.

As a final note, as shown in Table 2, ARMADILLO spends most of the time computing table
embeddings and, more specifically, constructing the intermediate graph-based representation of
the tables. We further inspected this behavior and identified a correlation between the table area
and the total embedding time, suggesting that larger tables have greater embedding time.

4.2.2 Table querying. In this section, we provide evaluations that are complementary to the ones of
Section 4.1.2 by analyzing the efficiency of ARMADILLO in a table querying scenario. To compute the
1000 000 overlaps for this experiment, Sloth needed 7 days of machine time. Overall, ARMADILLO
took approximately ten minutes to embed the 10100 tables needed for the experiment and to
compute the 1000 000 cosine similarities between the pairs. BERT-T, RoBERTa-T, and RoBERTa-T-N
needed around two hours for the same operation, BERT-R, BERT-T-N, and RoBERTa-R around four
hours, and TURL, Jaccard-B-U, and Jaccard-B-S around six hours. Finally, the Jaccard similarity
was the fastest method and needed four minutes in total. A similar trend can be observed in the

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 228. Publication date: June 2025.

Table Overlap Estimation through Graph Embeddings 228:19

=== Sloth = Jaccard TURL === ROBERTa-R
=== EmbDI = Armadillo RoBERTa-T

IS
o

w
o

N
o

Cumulative runtime (s)(103)

=
o

0 10 20 30 40 50 60
Number of samples (103)

Fig. 8. Cumulative runtime of the models while computing the overlap ratio of the 60k test pairs of WikiTables.

table reclamation scenario, where ARMADILLO computed almost three million overlaps and half
overlaps in less than twenty minutes.

In any case, also in this task, ARMADILLO is the best TRL approach in terms of efficiency and the
best in general, if we consider only its inference time, and even though its effectiveness is not as
good, it was not trained for a ranking task, and developing an architecture that is specific for it
may be relevant future work.

4.3 Architectural validation

To validate our architecture and justify our design choices we performed (1) an ablation study to
measure the impact of variations on the core components and (2) a performance stability study to
show that the model’s performs consistently across different data from the same domain.

Ablation study. The three core components of the ARMADILLO architecture proposed in Section 2
are node embedding initialization, node embedding aggregation, and overlap ratio computation. We
separately measured the impact of changes on these components and summarized an overview of
our results in Table 5.

Instead of initializing the node embeddings using the SHA-256 algorithm, we tried a BERT [11]
based approach, a Fasttext [7] based approach, and a random initialization. Our experiments
suggest that a random initialization, despite being slightly faster than SHA-256, is unable to provide
information about the content of the nodes, scoring a MAE of 0.1792 and delivering the worst
performance. The MAE obtained using Fasttext and BERT are higher than the ones obtained using
SHA-256 as well, suggesting that hash-values contained all the structural information needed by the
model for the overlap computation and that during the embedding process some of this information
is lost. Furthermore, runtime-wise they are outperformed, building the table graph almost three
and twenty times slower than ARMADILLO’s configuration.

Instead of computing the final table embedding by averaging all the column, row, and cell
embeddings, we also tried aggregating their combinations: only cell, row, or column embeddings,

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 228. Publication date: June 2025.

228:20 Francesco Pugnaloni et al.

Table 5. Ablation study comparing alternative component implementations to the ARMADILLO configuration.

Component Configuration Totaltime MAE

Random 3m:2s 0.1792
Initialization = BERT 30m:16s 0.0736
Fasttext 6m:31s 0.0917
Rows 3m:21s 0.0727
Columns 3m:25s 0.0725
Aggregation Cells 3m:52s 0.0731
Rows-Columns 3m:27s 0.0745
Rows-Cells 3m:22s 0.0708
Columns-Cells 3m:7s 0.0692
Similarity Absolute value 3m:25s 0.0709
Armadillo 3m:23s 0.0680

only row and column embeddings, only row and cell embeddings, and only column and cell
embeddings. Although our experiments show that ARMADILLO’s configuration delivers the best
performance, they are comparable with the ones of the other models, especially the ones obtained
by aggregating cell and column nodes, suggesting that their embeddings contain the most relevant
information for overlap computation. Indeed, even though the row embeddings are not directly
used, as shown in Section 2.2, they are part of the receptive field of column and cell nodes and their
embeddings entail information about them as well.

Finally, instead of computing the overlap ratio of two tables as the maximum value between zero
and the cosine similarity between their embeddings, we tried using the absolute value of the cosine
similarity. Our experiments suggest that the two approaches perform similarly, but ARMADILLO’s
one provides a lower MAE.

Performance stability. To evaluate the consistency of ARMADILLO’s performance across different
data from the same domain, we swapped the test and validation sets of the WikiTables triple dataset
and used them to train another version of ARMADILLO. We performed the same operation to train a
new version of ARMADILLO on GitTables. The models obtained a MAE of 0.069 both on WikiTables
and GitTables, these results are close to the values obtained by the versions of ARMADILLO trained
using test and validation sets in the normal ordering, which are 0.068 and 0.064 respectively.

5 Related work

In this section, we review the research areas that are most connected to our work: (1) discovery
and integration of related tables, (2) table representation learning, and (3) graph neural networks.

5.1 Discovery and integration of related tables

A line of work in the literature focuses on managing tabular data in data lakes. In this domain, we
identify three main tasks: discovering related tables, integrating them, and detecting duplicates.
For related table discovery, many approaches identify joinable tables to extend schemas by
finding shared join attributes using exact or fuzzy matching [12, 14, 45]. Zhu et al. [57] propose
JOSIE, which frames joinable table discovery as an overlap set similarity search problem, offering
scalability for large datasets. Other approaches focus on discovering unionable tables, i.e., tables
that can be merged to increase their number of tuples [17]. Nargesian et al. [40] approach the
problem by identifying unionable attributes, i.e., attributes that derive from the same domain and
that have significant syntactic and semantic similarity. SANTOS [29], further extends this approach

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 228. Publication date: June 2025.

Table Overlap Estimation through Graph Embeddings 228:21

by analyzing relationships between columns. More recently, Fan et al. [18] introduced Starmie
which leverages pre-trained language models to encode advanced column semantics using full
table context. There is a line of work that further generalizes this concept by discovering related
tables in a broad sense. Sarma et al. [43] provide a framework for finding bondings between tables,
including joinable and unionable tables, with scalable algorithms capable of handling over a million
tables. Other cases of related table discovery focus on identifying similar datasets in data lakes to
support data wrangling [6] or exploring related tables for data science pipelines, such as retrieving
training data and features in environments like Jupyter Notebooks [56].

The discovery phase is followed by the integration process, which aims to generate coherent
tabular data by combining related tables. Khatiwada et al. [30] propose ALITE, a framework that
exploits the full disjunction operator to handle cyclic join patterns over incomplete tabular data.
To aid the information integration process, Saha et al. [42] introduce schema covering, where a
complex schema is aligned with a set of concepts to identify correspondences, i.e., a cover of the
schema. Gal et al. [19] study the tradeoff between completeness, i.e., the part of the schema that can
be covered by the set of concepts in the cover, and ambiguity, i.e., the amount of overlap between
concepts in the cover. Fan et al. [16] propose Gen-T, a framework for table reclamation that aims to
identify a set of source tables to closely reconstruct a given table by performing both data discovery
and integration. The authors also apply Gen-T to validate tabular data generated by large language
models (LLMs) [15]. In our experiments, we explored ARMADILLO’s capabilities as blocking method
for the task of table reclamation.

The third category involves detecting duplicate tables. Bleifuf et al. [4] identify duplicate tables
in adjacent Wikipedia snapshots to track the evolution of tables over time. Koch et al. [32] focus
on table matching in data lakes, distinguishing between duplicate table retrieval (querying a table
against a collection) and lake de-duplication (comparing all tables), but considering only exact
matches and containment, hence simplified scenarios compared to those identifiable through the
table overlap.

5.2 Table representation learning

We call tabular elements components of tables such as rows, columns, cells, and captions. Two main
categories of approaches exist for generating embeddings of tabular elements: transformer-based
models and graph-based models. Transformer-based approaches flatten the two-dimensional table
into a textual format [1], often by serializing rows or columns and inserting separators and data
types [10, 13, 24, 44, 52]. Structural awareness is added through positional embeddings [24, 26, 52],
modified attention mechanisms (e.g., vertical attention in TaBERT [52] and combined vertical-
horizontal attention in [46]), or pretraining tasks specific to tabular data, such as masking cells,
columns, or entities [10, 24, 52].

Graph-based approaches, on the other hand, represent tables as graphs, where nodes correspond
to tabular elements and edges to relationships. EmbDI [8] represents tables as tripartite graphs
connecting column, token, and record nodes, and generates embeddings via a node2vec-style
approach [21]. Similar graphs [20, 34] are also exploited to generate meaningful attribute and
record representations that are used to support the entity resolution task. In MGNETS [9] one or
more graphs are used to model tables’ relations and to support the table search task. GTR [48]
instead feeds a graph transformer [53] with a tabular graph to solve the table retrieval task. Finally,
other approaches, such as Retro [22], generate relational embeddings by refining pre-trained
word embeddings using foreign key relationships. Since it creates an intermediate graph-based
representation of the table which is processed by a graph neural network model, ARMADILLO can
be classified in this category of approaches.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 228. Publication date: June 2025.

228:22 Francesco Pugnaloni et al.

5.3 Graph neural networks

Graph neural networks are a category of deep learning models that are designed to process graphs.
Kipf et al. [31] proposed one of the first architectures in this category, GCN (graph convolutional
network), which adopts a scalable semi-supervised approach to learn node embeddings that encode
both local graph structure and features of nodes. GraphSAGE, proposed by Hamilton et al. [23],
further extends the architecture by learning a function that generates embeddings by sampling and
aggregating features from a node’s local neighborhood. While in previous approaches neighboring
nodes contribute equally to the embedding of a target node, in graph attention networks (GATs) [47]
each node can influence the embeddings of its neighbors differently. This is achieved by using an
attention mechanism whose weights are learned directly by the GNN to discriminate the more
relevant neighbors from the less important ones. Finally, another popular GNN model is GIN (graph
isomorphism network) [51], which generates graph representations that encode isomorphism
relationships between graphs.

6 Conclusion and future work

In this paper, we presented ARMADILLO, an approach to efficiently determine the overlap ratio
between two tables. Its main applications are in the discovery of duplicate tables, multiple versions
of the same table, and related tables in general. ARMADILLO addresses this problem by generating
table embeddings that encode overlap relationships between tables in their similarities and that can
be efficiently compared. More specifically, ARMADILLO first creates intermediate representations of
tables based on tripartite graphs that embed knowledge about the structure and content of the table.
These graphs are then provided as input to a graph neural network that learns graph embeddings.
Finally, the embeddings’ cosine similarity approximates the overlap ratio between the input tables.

We also introduced two new datasets derived from GitTables and WikiTables, which contain
pairs of tables labeled with their overlap. After analyzing the performance of ARMADILLO on these
datasets, we observed that it can efficiently compute the table overlap ratio, committing an absolute
error lower than seven percent on average.

Regarding future work, we plan to improve the cross-domain performance of ARMADILLO by
exploiting domain adaptation techniques and to further extend ARMADILLO by training a new model
specifically for a table-ranking scenario. Then, we plan to relax the original definition of table
overlap, which relies on exact matching, by exploiting a more approximate fuzzy matching logic to
identify overlapping tables even with noisy data.

Acknoledgements

This work was partially funded by SAP, by MUR within the PRIN “Discount Quality” project (code
202248FWFS), and by Cineca within the ISCRA-C program (code HP10CSFAPN).

References

[1] Gilbert Badaro, Mohammed Saeed, and Paolo Papotti. 2023. Transformers for tabular data representation: A survey of
models and applications. Transactions of the Association for Computational Linguistics 11 (2023), 227-249.

[2] Chandra Sekhar Bhagavatula, Thanapon Noraset, and Doug Downey. 2015. TabEL: Entity Linking in Web Tables. In
ISWC (1) (Lecture Notes in Computer Science, Vol. 9366). Springer, 425-441.

[3] Tobias Bleifuf}, Leon Bornemann, Theodore Johnson, Dmitri V. Kalashnikov, Felix Naumann, and Divesh Srivastava.
2018. Exploring Change: A New Dimension of Data Analytics. Proceedings of the VLDB Endowment (PVLDB) 12, 2
(2018), 85-98. https://doi.org/10.14778/3282495.3282496

[4] Tobias Bleifuf3, Leon Bornemann, Dmitri V. Kalashnikov, Felix Naumann, and Divesh Srivastava. 2021. Structured
Object Matching across Web Page Revisions. In Proceedings of the International Conference on Data Engineering (ICDE).
1284-1295. https://doi.org/10.1109/ICDE51399.2021.00115

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 228. Publication date: June 2025.

https://doi.org/10.14778/3282495.3282496
https://doi.org/10.1109/ICDE51399.2021.00115

Table Overlap Estimation through Graph Embeddings 228:23

5]

[10]
[11]
[12]

(13

—_

[14]
[15]
[16]

(17

—

(18

—

(19

—

[20

[t

[21]

[22]

[23]

[24]

[25]

[26]

Tobias Bleifuf3, Leon Bornemann, Dmitri V. Kalashnikov, Felix Naumann, and Divesh Srivastava. 2021. The Secret Life
of Wikipedia Tables. In Proceedings of the Workshop on Search, Exploration, and Analysis in Heterogeneous Datastores
(SEA Data @ VLDB) (CEUR Workshop Proceedings, 2929). 20-26. https://ceur-ws.org/Vol-2929/paper4.pdf

Alex Bogatu, Alvaro A. A. Fernandes, Norman W. Paton, and Nikolaos Konstantinou. 2020. Dataset Discovery
in Data Lakes. In Proceedings of the International Conference on Data Engineering (ICDE). IEEE, 709-720. https:
//doi.org/10.1109/ICDE48307.2020.00067

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2017. Enriching Word Vectors with Subword
Information. Trans. Assoc. Comput. Linguistics 5 (2017), 135-146.

Riccardo Cappuzzo, Paolo Papotti, and Saravanan Thirumuruganathan. 2020. Creating Embeddings of Heterogeneous
Relational Datasets for Data Integration Tasks. In Proceedings of the International Conference on Management of Data
(SIGMOD). ACM, 1335-1349. https://doi.org/10.1145/3318464.3389742

Zhiyu Chen, Mohamed Trabelsi, Jeff Heflin, Dawei Yin, and Brian D. Davison. 2021. MGNETS: Multi-Graph Neural
Networks for Table Search. In Proceedings of the International Conference on Information and Knowledge Management
(CIKM). ACM, 2945-2949.

Xiang Deng, Huan Sun, Alyssa Lees, You Wu, and Cong Yu. 2022. TURL: Table Understanding through Representation
Learning. SIGMOD Record 51, 1 (2022), 33-40. https://doi.org/10.1145/3542700.3542709

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding. In NAACL-HLT (1). Association for Computational Linguistics, 4171-4186.

Yuyang Dong, Chuan Xiao, Takuma Nozawa, Masafumi Enomoto, and Masafumi Oyamada. 2023. DeepJoin: Joinable
Table Discovery with Pre-trained Language Models. PVLDB 16, 10 (2023), 2458-2470.

Julian Martin Eisenschlos, Maharshi Gor, Thomas Miiller, and William W. Cohen. 2021. MATE: Multi-view Attention
for Table Transformer Efficiency. In EMNLP (1). Association for Computational Linguistics, 7606-7619.

Mahdi Esmailoghli, Jorge-Arnulfo Quiané-Ruiz, and Ziawasch Abedjan. 2022. MATE: Multi-Attribute Table Extraction.
PVLDB 15, 8 (2022), 1684-1696.

Grace Fan, Roee Shraga, and Renée J. Miller. 2024. Finding Support for Tabular LLM Outputs. In VLDB Workshops.
VLDB.org.

Grace Fan, Roee Shraga, and Renée J. Miller. 2024. Gen-T: Table Reclamation in Data Lakes. In Proceedings of the
International Conference on Data Engineering (ICDE). IEEE, 3532-3545.

Grace Fan, Jin Wang, Yuliang Li, and Renée J. Miller. 2023. Table Discovery in Data Lakes: State-of-the-art and Future
Directions. In SIGMOD Conference Companion. ACM, 69-75.

Grace Fan, Jin Wang, Yuliang Li, Dan Zhang, and Renée J. Miller. 2023. Semantics-aware Dataset Discovery from Data
Lakes with Contextualized Column-based Representation Learning. PVLDB 16, 7 (2023), 1726-1739.

Avigdor Gal, Michael Katz, Tomer Sagi, Matthias Weidlich, Karl Aberer, Nguyen Quoc Viet Hung, Zoltan Miklos,
Eliezer Levy, and Victor Shafran. 2013. Completeness and Ambiguity of Schema Cover. In OTM Conferences (Lecture
Notes in Computer Science, Vol. 8185). Springer, 241-258.

Congcong Ge, Pengfei Wang, Lu Chen, Xiaoze Liu, Baihua Zheng, and Yunjun Gao. 2023. CollaborEM: A Self-Supervised
Entity Matching Framework Using Multi-Features Collaboration. IEEE Transactions on Knowledge and Data Engineering
(TKDE) 35, 12 (2023), 12139-12152.

Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable Feature Learning for Networks. In Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, August 13-17,
2016. ACM, 855-864. https://doi.org/10.1145/2939672.2939754

Michael Gunther, Philipp Oehme, Maik Thiele, and Wolfgang Lehner. 2020. Learning from Textual Data in Database
Systems. In Proceedings of the International Conference on Information and Knowledge Management (CIKM). ACM,
375-384.

William L. Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive Representation Learning on Large Graphs.
In Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Sys-
tems 2017, December 4-9, 2017, Long Beach, CA, USA. 1024-1034. https://proceedings.neurips.cc/paper/2017/hash/
5dd9db5e033da9c6fb5bad3c7a7ebead- Abstract.html

Jonathan Herzig, Pawel Krzysztof Nowak, Thomas Miiller, Francesco Piccinno, and Julian Martin Eisenschlos. 2020.
TaPas: Weakly Supervised Table Parsing via Pre-training. In ACL. Association for Computational Linguistics, 4320—
4333.

Madelon Hulsebos, Cagatay Demiralp, and Paul Groth. 2023. GitTables: A Large-Scale Corpus of Relational Tables.
Proc. ACM Manag. Data 1, 1 (2023), 30:1-30:17.

Hiroshi lida, Dung Thai, Varun Manjunatha, and Mohit Iyyer. 2021. TABBIE: Pretrained Representations of Tabular
Data. In NAACL-HLT. Association for Computational Linguistics, 3446-3456.

[27] Jaccard. 1912. The distribution of the flora of the alpine zone. In New Phytologist (Cargse, France.), Vol. 11. 37-50.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 228. Publication date: June 2025.

https://ceur-ws.org/Vol-2929/paper4.pdf
https://doi.org/10.1109/ICDE48307.2020.00067
https://doi.org/10.1109/ICDE48307.2020.00067
https://doi.org/10.1145/3318464.3389742
https://doi.org/10.1145/3542700.3542709
https://doi.org/10.1145/2939672.2939754
https://proceedings.neurips.cc/paper/2017/hash/5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html

228:24 Francesco Pugnaloni et al.

[28]

[29]

[30]

[31]

[32]

[33]
[34]

[35]

[36]

[37]
[38]
[39]
[40]
[41]
[42]

[43]

[44]

[45]
[46]
[47]

[48]

[49]

[50]

Kalervo Jarvelin and Jaana Kekalainen. 2002. Cumulated gain-based evaluation of IR techniques. ACM Trans. Inf. Syst.
20, 4 (2002), 422-446.

Aamod Khatiwada, Grace Fan, Roee Shraga, Zixuan Chen, Wolfgang Gatterbauer, Renée J. Miller, and Mirek Riedewald.
2023. SANTOS: Relationship-based Semantic Table Union Search. Proc. ACM Manag. Data 1, 1 (2023), 9:1-9:25.
Aamod Khatiwada, Roee Shraga, Wolfgang Gatterbauer, and Renée J. Miller. 2022. Integrating Data Lake Tables. PVLDB
16, 4 (2022), 932-945.

Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with Graph Convolutional Networks. In ICLR
(Poster). OpenReview.net.

Maximilian Koch, Mahdi Esmailoghli, Séren Auer, and Ziawasch Abedjan. 2023. Duplicate Table Discovery with Xash.
In Proceedings of the Conference Datenbanksysteme in Business, Technologie und Web Technik (BTW) (LNI, Vol. P-331).
Gesellschaft fiir Informatik e.V., 367-390.

Jure Leskovec, Anand Rajaraman, and Jeffrey David Ullman. 2020. Mining of Massive Datasets. http://www.mmds.org
Bing Li, Wei Wang, Yifang Sun, Linhan Zhang, Muhammad Asif Ali, and Yi Wang. 2020. GraphER: Token-Centric
Entity Resolution with Graph Convolutional Neural Networks. In Proceedings of the National Conference on Artificial
Intelligence (AAAI). AAAI Press, 8172-8179.

Xian Li, Xin Luna Dong, Kenneth Lyons, Weiyi Meng, and Divesh Srivastava. 2012. Truth Finding on the Deep Web:
Is the Problem Solved? Proceedings of the VLDB Endowment (PVLDB) 6, 2 (2012), 97-108. https://doi.org/10.14778/
2535568.2448943

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Dangi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer,
and Veselin Stoyanov. 2019. RoBERTa: A Robustly Optimized BERT Pretraining Approach. CoRR abs/1907.11692
(2019).

Matthew Michelson and Craig A. Knoblock. 2006. Learning Blocking Schemes for Record Linkage. In AAAL AAAI
Press, 440—445.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient Estimation of Word Representations in
Vector Space. In ICLR (Workshop Poster).

Fatemeh Nargesian, Erkang Zhu, Renée J. Miller, Ken Q. Pu, and Patricia C. Arocena. 2019. Data Lake Management:
Challenges and Opportunities. PVLDB 12, 12 (2019), 1986-1989. https://doi.org/10.14778/3352063.3352116

Fatemeh Nargesian, Erkang Zhu, Ken Q. Pu, and Renée J. Miller. 2018. Table Union Search on Open Data. PVLDB 11, 7
(2018), 813-825.

T. Konstantin Rusch, Michael M. Bronstein, and Siddhartha Mishra. 2023. A Survey on Oversmoothing in Graph
Neural Networks. CoRR abs/2303.10993 (2023).

Barna Saha, Ioana Stanoi, and Kenneth L. Clarkson. 2010. Schema covering: a step towards enabling reuse in information
integration. In Proceedings of the International Conference on Data Engineering (ICDE). IEEE Computer Society, 285-296.
Anish Das Sarma, Lujun Fang, Nitin Gupta, Alon Y. Halevy, Hongrae Lee, Fei Wu, Reynold Xin, and Cong Yu. 2012.
Finding related tables. In Proceedings of the International Conference on Management of Data (SIGMOD). ACM, 817-828.
https://doi.org/10.1145/2213836.2213962

Yoshihiko Suhara, Jinfeng Li, Yuliang Li, Dan Zhang, Cagatay Demiralp, Chen Chen, and Wang-Chiew Tan. 2022.
Annotating Columns with Pre-trained Language Models. In Proceedings of the International Conference on Management
of Data (SIGMOD). ACM, 1493-1503.

Sahaana Suri, Ihab F. Ilyas, Christopher Ré, and Theodoros Rekatsinas. 2021. Ember: No-Code Context Enrichment via
Similarity-Based Keyless Joins. PVLDB 15, 3 (2021), 699-712.

Mohamed Trabelsi, Zhiyu Chen, Shuo Zhang, Brian D. Davison, and Jeff Heflin. 2022. StruBERT: Structure-aware
BERT for Table Search and Matching. In WWW. ACM, 442-451.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Li0, and Yoshua Bengio. 2018. Graph
Attention Networks. In ICLR (Poster). OpenReview.net.

Fei Wang, Kexuan Sun, Muhao Chen, Jay Pujara, and Pedro A. Szekely. 2021. Retrieving Complex Tables with Multi-
Granular Graph Representation Learning. In Proceedings of the International Conference on Information Retrieval (SIGIR).
ACM, 1472-1482.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi, Wolfgang Macherey, Maxim Krikun,
Yuan Cao, Qin Gao, Klaus Macherey, Jeff Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, Lukasz Kaiser, Stephan
Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens, George Kurian, Nishant Patil, Wei Wang, Cliff
Young, Jason Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes, and Jeffrey Dean. 2016.
Google’s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation. CoRR
abs/1609.08144 (2016).

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Powerful are Graph Neural Networks?. In 7th
International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net.
https://openreview.net/forum?id=ryGs6iA5Km

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 228. Publication date: June 2025.

http://www.mmds.org
https://doi.org/10.14778/2535568.2448943
https://doi.org/10.14778/2535568.2448943
https://doi.org/10.14778/3352063.3352116
https://doi.org/10.1145/2213836.2213962
https://openreview.net/forum?id=ryGs6iA5Km

Table Overlap Estimation through Graph Embeddings 228:25

[51]
[52]
[53]
[54]

[55]

[56]

[57]

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Powerful are Graph Neural Networks?. In
ICLR. OpenReview.net.

Pengcheng Yin, Graham Neubig, Wen-tau Yih, and Sebastian Riedel. 2020. TaBERT: Pretraining for Joint Understanding
of Textual and Tabular Data. In ACL. Association for Computational Linguistics, 8413-8426.

Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J. Kim. 2019. Graph Transformer Networks.
In NeurIPS. 11960-11970.

Luca Zecchini, Tobias Bleifuf3, Giovanni Simonini, Sonia Bergamaschi, and Felix Naumann. 2024. Determining the
Largest Overlap between Tables. Proceedings of the ACM on Management of Data (PACMMOD) 2, 1 (2024), 48:1-48:26.
Li Zhang, Shuo Zhang, and Krisztian Balog. 2019. Table2Vec: Neural Word and Entity Embeddings for Table Population
and Retrieval. In Proceedings of the International Conference on Information Retrieval (SIGIR). ACM, 1029-1032. https:
//doi.org/10.1145/3331184.3331333

Yi Zhang and Zachary G. Ives. 2020. Finding Related Tables in Data Lakes for Interactive Data Science. In Proceedings
of the International Conference on Management of Data (SIGMOD). ACM, 1951-1966.

Erkang Zhu, Dong Deng, Fatemeh Nargesian, and Renée J. Miller. 2019. JOSIE: Overlap Set Similarity Search for
Finding Joinable Tables in Data Lakes. In Proceedings of the International Conference on Management of Data (SIGMOD).
ACM,, 847-864.

Received October 2024; revised January 2025; accepted February 2025

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 228. Publication date: June 2025.

https://doi.org/10.1145/3331184.3331333
https://doi.org/10.1145/3331184.3331333

	Abstract
	1 Estimating table overlap
	1.1 Table overlap ratio
	1.2 Efficient overlap ratio approximation

	2 Armadillo
	2.1 Graph construction
	2.2 Graph embedding
	2.3 Overlap computation and training

	3 Experimental setup
	3.1 Datasets
	3.2 Ground truth generation
	3.3 Baselines
	3.4 Testing scenarios

	4 Experiments
	4.1 Effectiveness
	4.2 Efficiency
	4.3 Architectural validation

	5 Related work
	5.1 Discovery and integration of related tables
	5.2 Table representation learning
	5.3 Graph neural networks

	6 Conclusion and future work
	References

