The Limits of Graph Samplers for Training Inductive
Recommender Systems

Theis E. Jendal

Aalborg University
tjendal@cs.aau.dk

Peter Dolog
Aalborg University
dolog@cs.aau.dk

ABSTRACT

Inductive Recommender Systems are capable of recommending for
new users and with new items thus avoiding the need to retrain
after new data reaches the system. However, these methods are still
trained on all the data available, requiring multiple days to train a
single model, without counting hyperparameter tuning. In this work
we focus on graph-based recommender systems, i.e., systems that
model the data as a heterogeneous network. In other applications,
graph sampling allows to study a subgraph and generalize the
findings to the original graph. Thus, we investigate the applicability
of sampling techniques for this task. We test on three real world
datasets, with three state-of-the-art inductive methods, and using
six different sampling methods. We find that its possible to maintain
performance using only 50% of the training data with up to 86%
percent decrease in training time; however, using less training data
leads to far worse performance. Further, we find that when it comes
to data for recommendations, graph sampling should also account
for the temporal dimension. Therefore, we find that if higher data
reduction is needed, new graph based sampling techniques should
be studied and new inductive methods should be designed.

PVLDB Reference Format:

Theis E. Jendal, Matteo Lissandrini, Peter Dolog, and Katja Hose. The
Limits of Graph Samplers for Training Inductive Recommender Systems .
PVLDB, 18(8): XXX-XXX, 2025.

doi: XX XX/XXX XX

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/GraphRecommendation/gsampling.

1 INTRODUCTION

Recommender Systems (RSs) are used in many applications, ranging
from online retail stores to advertisement platforms. These systems
utilize historic interactions between users and items to estimate
future user behaviors, with the hypothesis that users with similar
historical preferences will exhibit similar behavior in the future;
often referred to as Collaborate Filtering (CF) [21]. Most approaches

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 18, No. 8 ISSN 2150-8097.
doi:XX.XX/XXX.XX

Matteo Lissandrini
University of Verona
matteo.lissandrini@univr.it

Katja Hose
TU Wien
katja.hose@tuwien.ac.at

capture user preferences and item concepts as dense vector rep-
resentations, called embeddings, within high-dimensional spaces,
such that similar users and items have similar embeddings [21, 46].
To build these representations, deep neural networks learn vector
representations assigned to all users and items often through dictio-
nary encodings. These are called transductive techniques [21, 46].
This also means that, when a new user or item is added to the sys-
tem, in theory they are required to re-train the model to compute
the missing embeddings.

Recently, a lot of focus has been placed on inductive RSs due to
their ability to predict for unseen users and items [21, 46, 49, 50, 52].
These systems do not learn a unique vector for each user and item
but instead learn to generate vectors based on their features and con-
nections. A transductive RS would not be able to recommend “The
Dark Knight” in Figure 1 as it is not present in the train graph. In
contrast, an inductive RS can recommend items (and to users) absent
during training but introduced at inference time [21, 25, 40, 45, 46].
Among inductive methods, only a few can recommend effectively
for both new users and items (see Table 1). Yet, the training time
of these inductive methods can be very slow, taking up to 2 days
to train on a Collaborative Graph (CG) with ~175k users and ~77k
products. Such long training times are particularly impactful for
hyperparameter tuning, where multiple training cycles are often re-
quired. Therefore, recent works study how to sample training data
to decrease tuning time [12, 32]. They focus on hyperparameter tun-
ing, perform random sampling, and, most importantly, still require
the methods to train on the full data afterwards. This is particularly
limiting if we consider that the graphs continuously evolve, with
millions of items being added each day in some cases [30].

In the past, graph sampling has been proven effective for study-
ing important graph properties on a smaller scale [26]. Thus, in
this paper, we are interested in studying whether it is possible to
utilize graph sampling approaches to reduce the computational cost
and, hence, the training time in the training step of graph-based
RSs. Since inductive methods are capable of predicting for new
users and items, we, in theory, do not require any retraining of
the methods on the full dataset to be able to perform inference on
it and thus to recommend new items or to new users. When per-
forming graph sampling, current methods only sample within each
batch, reducing batch forward propagation time but maintaining
the number of batches in an epoch [31]. Therefore, they still go
through all available graph data. Instead, by subsampling the graph
before training, we effectively obtain a smaller graph structure and
thus reduce the training data that needs to be processed. We are

https://doi.org/XX.XX/XXX.XX
https://github.com/GraphRecommendation/gsampling
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/XX.XX/XXX.XX

Train graph Sampled graph

Inception Inception

Don Jon

American
Hustle

The Prestige

\

The Prestige
CG samples affect
KG sampling

) E*" —"Lieist/‘

ro| i A
hristopher, | Inception AN\ Christopher
Nolan /" T Sci-Fi Nolan

N .
_DonJon Y Fiction

) h —n | = »'}:rime Fiction EZE

oseph _ = Joseph |
Gordon-Levitt Y kX Gordon-Levitt

American| Tragedy ClCEIHIET
Hustle ; /
Lo
Christian Bale E >']Jrama
The Prestige

* *
- n
Kim The Dark
Knight

Don Jon ,-/

I
I

2 !
A L. —
Christian Bale E " 'brama
The Prestige

Test graph

Inception

— Like

> New like

Directed
Don Jon
Starred

—-—» Hasgenre

American

“ Hustle —— Subgenre of

* New node

The Prestige

EAEIN
Inception\ \
[

e

-\ "

\ \ Heist — 4@, .

Christ?phpr Don Jon v\\’ Action

Nolan g i
Sci-Fi Eﬁ“ { SciFi €. .
)'i;iction m American [{ | & iction |
h(Hustle /"~ ®Crime Fiction , |
Crime Fiction Joseph A\ % i

Gordon-Levitt E< S

The Prestigs}\ q’ragedy

Christian Bale

Figure 1: Sampling example with illustration of sampling graph and the correlation between CG samples and KG samples.

interested in studying how to find a suitable subset of training
nodes, that allows us to obtain an induced subgraph that is repre-
sentative enough for the models to learn an inductive bias suitable
for future recommendation. The objective being to reduce training
time with as little impact on final predictive quality as possible.
While the graph-sampling literature has proposed many different
techniques [26, 31], these techniques have not been studied with
graph neural networks, the current de-facto standard architecture
in RSs. Further, only one sampling method (node-based random
sampling) and RS (PinSAGE [49]) has been tested directly on just a
sub-sampled graph. That is, the more established graph sampling
techniques have yet to be tested in this domain. We therefore study
three state-of-the-art inductive RSs on three real-world datasets
using six graph sampling methodologies, including the sampling
technique used in practice. In summary, in this work we present:
(1) The first extensive study of graph-based sampling prior to train-
ing for inductive recommender systems; (2) A holistic evaluation
of the limitations of current sampling methodologies and inductive
RSs; and (3) A set of interesting research directions for the design
of sampling techniques in inductive recommender systems. Our
results demonstrate that: (i) It is possible to maintain good pre-
dictive performance by training on 50% of the data while decreasing,
in this way, the training time by up to 85%. (ii) Temporal sampling
and user-based sampling perform best. (iii) For datasets with a high
popularity bias, it is often enough to use 5% of data for the system
to perform well; and (iv) with sampling ratios below 50% existing
sampling techniques and existing RSs still struggle to maintain
good performances; this raises the question of whether it is indeed
possible to design more representative sampling algorithms and
more robust learning approaches.

2 BACKGROUND & PRELIMINARIES

Similar to previous studies [21], we consider RSs using users, items,
and positive interactions as input data. Further, we also allow for

textual information and attributes attached to items. Formally, given
a set of users U and a set of items 7, we define an interaction matrix
I€{0, 1}/ Y11 where I,;=1 if a user u€ ¥ has interacted with an
item i€ ; otherwise I,;;=0, i.e., the user has never interacted with the
item. The interaction information can be structured as a bipartite
graph, known as a CG, where rating interactions appear as edges.
Thus, the CG can be defined as a Gog=(Veg, Req), where Vo =U U
I are the users and items and R¢y={(u, i)|I,;=1}. Furthermore,
we define the mapping function F:UxI — N=° mapping all
rating interactions (edges) to a natural number representing the
time at which the rating was made, represented as t; in Figure 1.
The temporal aspect of ratings are important as trends and user
interests change over time. The evaluation of RSs should, therefore,
take temporal information into account when constructing train,
validation, and test sets.

In addition, a Knowledge Graph (KG) [2, 21, 44], a heterogeneous
graph containing entities and their semantic relations, is added to
model descriptive information for items (see Figure 1). AKGis a
directed labeled multigraph defined as the triple Gxy=(Vg, Rig> L)
including nodes for both recommendable entities (items) and de-
scriptive entities (Viesc=Vig \ 7). Furthermore, the labels .L repre-
sent the semantic type of edges, s.t. the relationship can be defined
as Ry S VigX LXVig. In this model, the KG does not represent the
collaborative signal; thus we combine the KG and CG as a Collabo-
rative Knowledge Graph (CKG) [21, 44], st, Gekg=(Verg» Rekg» Lekg)»
where Vorg=VigUU, Rerg=RigU{(u, likes, i) |I,;=1}, and Lgy=LU
{likes}. We further include a feature function X :‘ng—>Rd mapping
each entity to a feature vector representing, for instance, the textual
information for the node and the structure of Gy,.

We treat the recommender objective as a ranking problem. Thus,
a recommender is a function r, 7=F¢(X, I, Gkg, u) parametrized
by learned parameters 6 producing a ranking score for all items
in I according to the inferred preferences of user u. Thus, given

the ranking r,,, it must hold that Vi, i’ €7, with i#i’, we have that
r,; > Iy iff. the user u prefers item i over i’.

Given the above data model and a sampling ratio @, a sampling
method S produces subgraphs Qc'gI:ch and g,gg:gkg such that
|ggg|+|g,2g| < a-(|Geg|+|Grgl)- As in prior work [49], our goal is to
train on the subgraphs G/, and g,gg to learn the parameters for %y
and perform inference on the full graph.

3 RELATED WORK

In the inductive setting, we have users and items not seen during
training, for which the RS should be able to make recommendations.
This capability is crucial for real-world applications where users
and items are continuously added. Further, it allows to train on a
sub-graph while performing predictions for the entire graph.

Inductive Recommender Systems. There are multiple methods
for inductive recommendation, using different techniques ranging
from graph-based methods [21, 46] and transformer-based [35, 39],
to RSs based on variational encoders [53]. However, a large pool of
methods, as shown in Table 1, can make inductive recommenda-
tions for either only new users or only new items. Hence, a method
able to recommend to new users would still need to train on the
full set of items and vice versa. Meta-learning methods can recom-
mend to new users and with new items bu shortly training on the
new data [14, 25]. Numerous techniques propose using subgraphs
based on user-item pairs, alleviating the need for learned user and
item embeddings; instead, using the graph structure and distances
to generate embeddings [50, 52]. However, constructing distinct
subgraphs for each pair is prohibitively time-consuming and space-
consuming when ranking items [21, 46]. Several methods use user
meta-data to improve recommendations [4, 43], but such data is
often unavailable or limited to a small user subset [38]. Privacy and
data constraints limit interest in these methods.

Graph-based approaches use Graph Neural Networks (GNNs)
to perform aggregation over all nodes in the graph. To reduce the
training overhead, GraphSAGE [15] applies node sampling dur-
ing batch constructions, fixing the memory overhead. GraphSAGE
was designed for node classification and thus does not support
recommendation lists. Among inductive recommender systems,
INMO [46] instead learns initial embeddings for a subset of users
and items, which all nodes must aggregate from for their repre-
sentation. Thus, it does not use node features. Yet, for very large
graphs, using only neighbor sampling was insufficient, and Pin-
SAGE [49] thus applied both sampling of the training graph and
introduced a MapReduce framework to scale-out the computation.
Notably, PinSAGE is designed to recommend pins to boards, which
can be translated to users and items; however, contrary to users,
the boards are not explicitly modeled by PinSAGE and the method
thus focuses on item-item recommendation exploiting in this way
the collaborative signal. Instead of relying only on the collabora-
tive signal, GInRec [21] proposes using KG information, applying
relation-specific gates for aggregation, and simply representing
users by their neighbors. When subsampling the graph, we natu-
rally remove both users and items for which we are still interested
in recommending. Methods unable to handle such scenarios are,
therefore, not relevant. Consequently, the relevant recommenders
that we can examine are PinSAGE [49], INMO [46], and GInRec [21].

Table 1: Related recommendation methods, the Task they
support among (C) Node Classification, (R) Ranking, (P) Rat-
ing Prediction, and (SR) Sequential Recommendation.

Inductive
Model Task|User Item Architecture Main Limitation
BERT4Rec [40] SR | v X Transformer
IDCF [45] P v X Matrix factorization
Cannot recommend for
ReBKC [20] P v X |Multi-headed attention .
new items
IGCCF [11] R |v x GNN
BSARec[39] SR | v X Transformer
ICP [51) R X v NN Cannot recommend for
GAR [6] R X v/ | Adversarial learning
new users
CVAR [53] R X v Variational encoder
MeLU [25] R Meta-learning Requires retraining for
MetaKG [13] R Meta-learning each new user
IGMC [52] P|v v Subgraph User-item subgraph
GIMC [50] P|lv v Subgraph construction is
cost-intensive
PGD [43] R v/ ¢ | Student/teacher model Requires user
THGNN [4] R v v GNN metadata
GraphSAGE [15]| C v GNN Not made for
recommendation
PinSAGE [49] R v GNN w/ attention
INMO [46] R|v v GCN
GInRec [21] R v v GNN w/ gates

Training efficiency. Multiple approaches exist for reducing the
graph sizes other than sampling[17]: (i) graph sparsification re-
moves edges and/or nodes to reduce the computational cost while
preserving performance. Using top-k nodes or edges has been used
based on various scoring metrics, such as PageRank [34] or through
a parameterized method [23]. (ii) Graph coarsening merges nodes
into supernodes either through reconstruction or other optimiza-
tion strategies [17]. The reconstruction can be either through spatial,
by merging pairs with the least effect on the reconstruction error,
or spectral methods, by comparing the eigenvalues or vectors. Al-
ternatively, it is possible to learn supernodes, representing a cluster
of the graph [19]. (iii) Graph condensation, constructs a synthetic
graph for which a method can be trained on with similar perfor-
mance [17]. They use gradient matching between a method learned
on the original graph and the synthetic graph, distribution match-
ing of the properties, or trajectory matching. Sparsification and
condensation methods are usually designed for node classification
and almost always rely on labeled nodes [17, 41]. Furthermore, the
condensation methods can be both time and space intesive [41, 47].

Sampling of graphs has been used for approximate spectral clus-
tering [42], for topology estimation [24], estimating graph char-
acteristics [5], and covariance estimation [8]. However, none of
these study node embedding methods. Many GNN methods ap-
ply sampling during training, requiring recomputation at each
batch. They can be grouped largely into node-wise, layer-wise,
and subgraph-based methods [31]. Nevertheless, the sampling is
always performed on the full train graph, repeatedly, which can be
infeasible in practice. Within hyperparameter optimization, multi-
ple methods exist to decrease tuning time, with one branch focusing
on dataset sampling [12, 32]. However, after finding optimal pa-
rameters, the methods still require training on the full graph due

to working with transductive methods. Other works use sampling
to adaptively select negative sampling for faster training; however,
they still require all positive samples [7]. Instead, PinSAGE [49] was
shown to be able to train on a random uniform sampling over the
graph. Specifically, sampling 20% of all graph boards that, for their
dataset, proved to have negligible impact on performance. However,
the final graph after sampling still contained multiple millions of
nodes and their graph was not the usual bipartite or multi-partite
graph. Thus, the question about which sampling technique is more
effective and what are the actual effects on different dataset size
and domains remains open. For example, random node sampling
would sample sporadic nodes and create loosely connected graphs,
which is less suitable for graph convolution methods.

Therefore, for the first time, we study different graph-based
sampling techniques for state-of-the-art inductive methods. We
choose to focus on well established sampling methods that ensure
semi-coherent graph structures [26].

4 METHODOLOGY

We detail here the sampling methods and the inductive recom-
mender systems used. For the recommenders, we describe only the
most important parts contributing to their performance.

4.1 Sampling methods

We evaluate two standard graph sampling approaches described
as the most scalable and effective for reducing the size of very
large graphs and designed specifically for their ability to preserve
structural properties of the graphs [26]. The sampling technique
adopted by PInSAGE [49], and a simple baseline taking into account
the temporal information on edges. We perform node sampling for
all methods, producing an induced subgraph where all connecting
edges among the sampled nodes are preserved. When sampling
from the KG, we limit the starting nodes to nodes for the CG.
Forest Fire (FF) [27]. FF simulates a tree burning process, where
nodes ignite neighbors based on probabilities. It uses two edge prob-
abilities: forward p¢ and backward pj,. We test two edge-sampling
methods: FFB with a binomial mean of (1 — p)~! [27], and FF with
mean np. The latter is greedier in selecting edges when encounter-
ing a hub, thus terminating earlier, but it produces very skewed
distributions, as shown in the experimental section. Given a random
starting node, the method ignites both backward and forward-going
edges; the new burning nodes can now also burn their neighbors,
and thus, the forest fire continues. If no new burning nodes exist, a
new random start node is selected. We present the FF algorithm in
Figure 2 to illustrate the use of the sampled input nodes.
Random Walk (RW) and Random Jump (R]) [34]. RW ran-
domly selects a starting node and performs random walks from it
with a restart probability p.; adding visited nodes to the frontier. If
at each step of the walk no new nodes could be visited, a new node
is picked as the starting node. R] is a similar method that randomly
jumps to a new node during the walk, with the same probability p..
PinSAGE Sampling (PS) [49]. When training PinSAGE [49],
“board” sampling is proposed for training using a smaller graph.
In this case, the graph is a bipartite graph between boards and
pins, and when a board is sampled, itself and all its pins are added
to the sample until some criteria is met. We adapt this sampling

Algorithm 1 General sampling architecture

input: Geg, Gkg, @ SAMPLER

output: Giy, Gy . where |Reg| - a & [Rig| A |Rigl - ~ [R] |
g,'sg SAMPLER(Gcg, { }, @)

Gry < SAMPLER(Gkg. Vieg N Vi)

Algorithm 2 Forest Fire algorithm

Require: SAMPLENEIGHBORS: samples neighbors of a node given probabilities and
NODESUBGRAPH: constructs a subgraph containing only input nodes and the edges
of the resulting graph.

1: function FORESTFIRE(G, Vin, @, P, pb)
: e— |G| «a > Number of edges to sample

3 > Initialize burning, frontier, and #samples

4: B« {},F—{},s<0

5: w « Random start node from (F if F # @ else V)

6: whiles < eAs < |G| do

7 N « SAMPLENEIGHBORS(G, W, Pf>Pb)

8: B« BUNU{w}

9: F— FU{w}

10: if Vi, \ F = @ then

11: S— V\Fif B\F=0gelse B\ F

12: w « Random node from S

13: else

14: w « Random node from (V;, U B) \ F
15: s « |NopeSuBGRraPH(G, B)|

16: return NODESUBGRAPH(G, B)

method by simply sampling users and their interactions for the CG.
However, this only works for bipartite graphs, and adapting it to
the KG is non-trivial. We use RW for KG sampling since a taxonomy
path describes meaningful connections. Further development for
heterogeneous graphs remains an open research question.

Temporal Sampling (TS). As each rating is associated with a
time t, we can sample the users and items that have been active
most recently. Meaning, given a CG, we sample the user u and item
i, s.t. the rating time is newer than that of any other user v’ and
item i’ rating, as F;(u, i) > %3 (u’,i"). Then, given that the KG does
not have any timestamps, we use RW for that portion of the graph.

Time Complexity. The complexity of FF is O(|V| + |R|) when
sampling all edges as the algorithm when starting at the root in
a tree structured graph, as the algorithm is equivalent to breath
first search. For RW and R]J, the worst case would be a graph of
disconnected nodes containing only self loops, O(|V|lw), where [is
the walk length and w is the number of walks performed per node.
PS goes through all users and their interactions, the complexity is
thus O(|U| + |R|). Finally, for TS, the complexity is O(|R|) as the
method in the worst case need to visit each edge.

4.2 Inductive recommenders

The best-performing methods for recommendation in this setting
are all based on GNNs and perform graph convolutions. A GNN can
be described using an aggregation function and an update function,
the former computing a neighborhood representation of nodes and
the latter updating the node [15]. For example, the neighborhood
aggregation can be the mean of its neighborhood, followed by a
non-linear layer as an update function [15]:

o _ 1 (-1 (1) _ (-1 ()
eNu—m Z e, € —U(W[ey IIeNu]), (1)
(v',0)eNy

Table 2: Dataset properties: I: items; U: users; R: ratings; TR: ratings in test set; STime: is the skewness of the rating times using
the Fisher-Pearson coefficient; and DCG/DKG are the densities for the Collaborative Graph and Knowledge Graph, respectively.

#1 #U #R DCG #TR STime #Entities #Relations #Relationships = DKG

MovieLens

where [€ [1,...,L] is the current layer, N, is the neighborhood of
veV, ez(,l) € R? is the embedding at layer I, o is some activation
function, W € R¥ >4 is a linear layer, and [.||.] is concatenation.
The initial embeddings of ez(,o) can thus be represented either by
using a learned embedding or by extracting features. We refer
to the initial embedding of all vertices as X € RIVIxd" A GNN
captures information from distant nodes through multiple graph
convolutions. Each convolution acts like a bounded BFS, so graph
size directly impacts training time.

Pin SAmpling and aggreGatE (PinSAGE [15]). PinSAGE’s
node embeddings are created, based on the GraphSAGE architec-
ture, using the feature function X, allowing the method to perform
inductive recommendation. PinSAGE was used to recommend pins
to boards, i.e., user collections of similar items. Thus, the method
only uses an item graph G;, where edges represent the co-pinning
(co-interactions) of the items, thus not representing the users. For
example in Figure 1, “The Prestige” and “Don Jon” would be con-
nected as Aiden likes both of them. Hence, PinSAGE optimizes
towards item similarity as:

Z Ej»-pr(iymax(0, e;e;r — ejey + A), (2)
(ii")€Gi

where Pr(i) is a probability of selecting a negative item given i.

Gated Inductive Recommender (GInRec [21]). GInRec pro-
poses using KG information in addition to user interactions. The
method uses relation-specific gates to capture the relational infor-
mation. GInRec further applies an auto-encoder architecture over
all input features given by X to reduce their dimensionality. In
contrast to PInSAGE, users are represented in the graph using the
CKG and initialized using a zero-vector, assuming graph convolu-
tions are sufficient for user representations. The method can thus
utilize Bayesian Personalized Ranking (BPR) loss for ranking [37],
trying to rank positive items higher than negative items, which is
optimized in conjunction with the auto-encoder loss.

Inductive Module for collaborative filtering (INMO [46]).
INMO uses a key-query architecture, selecting a subset of nodes as
keys, learning their representations and how to infer representa-
tions for non-key elements. Hence, it defines a subset U CU’ and
;. €T’ that can be used to represent all users and items as:

(0) 1 (-1)
- - T+ eysers 3
Cu (L.nI"|+1)* l_egn]k €; Cuser ©)
(0) 1 E (-1)
A [— +e; s 4
€i (U; nU|+1)* el Cu Citem @

where eg_l) € R are the learned embeddings, eys.r is a learned
template embedding and 7, = {i|(i,u) € N,}. For item queries,
the same equations are used, although they are inverted. Since
all vertices in the CG are represented as the average embedding,

4,645 14,206 1,889,382 2.86E-02 499,040
Amazon Book|24,841 70,679 843,228 4.80E-04 322,048
Yelp 77,319 174,840 2,428,509 1.80E-04 809,989

0.26 14,062 8 100,719 2.88E-04
-0.90 88,572 39 2,555,995 1.99E-04
-0.50 75,199 12 1,643,792 7.07E-05

the individuality of the learned embeddings is lost. Therefore, in
tandem with the BPR loss, INMO proposes a self-enhancing loss:

Z Z Z Ino (e,(fl)TWsei(_l) - el(,_l)TWSei(,_l)) (5)
uel’ ieI,NI" i'eI'\ I,

While user e,(lo) and item efo) embeddings can be used by any sub-
sequent recommender, INMO adopted LightGCN [18].

5 EXPERIMENTS

As in PinSAGE [49], we aim at reducing the amount of resources
needed and the computation cost of training by using a subsampled
graph, while inference is still performed on the full graph. Extended
results can be found in [22]. We answer the following questions:
RQ1) How do sampling methods affect the ability of RSs to learn
reliable models? RQ2) How does sample size affect the models’
performance? RQ3) What is the correlation between training time
and performance when sampling? RQ4) How do different RSs
models handle subsampling?

Datasets. We evaluate the methods on three real-world datasets
(See Table 2): (i) a dataset with ratings on movies, MovieLens-20m
(ML-20m) [16] extended with the MindReader KG [3]; (ii) one with
reviews of books, Amazon-Book (2014) (AB) [33] for which a KG
was constructed when testing the transductive method KGAT [44];
and (iii) a dataset with reviews of businesses, Yelp Dataset (YD) [48],
for which we extracted a KG [9]. For each dataset, we only use
ratings for items connected to the respective KGs, removing all
other items and the respective ratings. We further remove users and
items with less than 5 ratings as well as users with ratings spanning
less than 5 days. The datasets are split with ratios 0.8:0.1:0.1 for
train, validation, and testing, respectively; ensuring that all ratings
of the train set occur before the validation set, and validation before
test. This ensures trends occur naturally over time and that all
methods are tested on new data. The sampling is performed on the
training partition, as we are interested in reducing the training time.
We sample a few ratings for each user for validation and testing,
simulating new users being greeted with an initial page where they
provide initial ratings, similarly to [21, 25].

Analyzing the datasets (Table 2), we notice that the ratings are
unevenly distributed over time. We report their skewness in the
STime column. Positive values mean most ratings occur early, with
less activity later; negative values indicate the inverse. We observe
that most of the ratings for AB occur late, while most occur early for
ML-20m. Such distributions naturally affect the subsequent results,
where AB and YD probably adhere to normal business growth. How-
ever, the YD was affected by COVID, as seen in Figure 2, tracking
the number of ratings given to an item per month, with a moving
window of 12 months. Making the dataset non-trivial for RSs.

I CG ltem [CG User I KG Entity I KG Item
ML-1M AB YD
Yelp 1.0 10 g 1.0

@ 40 i
2 \ 3 vos 0T ® i? I
B30 \/“ i i] g n M o .
© / A 206 ° i 0.6 8 o |06 .
Y= | ﬂ * ° i *
°20 [sy B o4 0.4 i ; i i 0.4
o \/f@ A a o i o i
2 N
2 1, sl | 0.2 0.2 0.2 g B Ble
S g
= . 0.0 FF FFB PS Rl RW TS 0.0 FF FFB PS Rl RW TS 0-0 FF FFB PS R} RW TS

'06 '08 '10 '12 '14 '16 '18 '20 '22 J J J

Time Sampling method

Figure 2: #Ratings on items.

Sampling method Sampling method

Figure 3: Kolmogorov-Smirnov D-statistic of degree distribution per node type.

Sampling method — FFB PS — TS
—— FF FFB PS RI -~ RW - TS ---- Train graph Metric —e= NDCG --=- Cov -~ Time
YD - CG User/vertex ratio YD STime AB 0% YD
1.0 e 0% - °
2 ~20%
0.8 B -20% :
-0.75 ‘T —a09
061 === S —40% 0%
04] -1.00 o ~60%
’ 2 —60%
0.2 -1.25 & -80%
T —80%
0.0 -1.50 © —~100%
01 02 03 04 05 01 02 03 04 05 01 02 03 04 05 01 02 03 04 05
Ratio Ratio Ratio Ratio

Figure 4: Illustration of user ratio and rating skew in the YD.

Table 3: Sampling resource usage with sampling ratio r = 0.5.
The sampling time (Time) for CG/KG is in seconds, peak
memory (Mem) in GB, and MTT is the floored average
method train time. TC is time complexity with / and w being
walk length and number of walks, respectively.

ML AB YD

Time Time Time TC

cG kG MM cg ke M™M| o6 ke Mem
FF <1s 55 0.9GB| 46s <Is 1.2GB| 192s 80s 1.5GB|| V[+ |R]
FFB | 17s 15s 0.9GB| 290s 504s 1.2GB| 1,272s 1,108s 1.5GB| | V] + [R]
PS 2s - 12GB 12s - 1.2GB 66s - 1.5GB||U| + |R]
RJ 8s 10s 0.9GB 96s 194s 1.3GB| 442s 298s 1.6GB| [V|Iw
RW 8s 11s 0.8GB 58s 100s 1.2GB| 152s 109s 1.5GB| [V|Iw
TS 4s - 09GB| 22s - 13GB| 74s ~14GB| [R]
MTT|3,860s - - 15,670s - - |77,728s - -

Parameters. For the samplers, we study different ratios «€{0.05, 0.1,

0.2,0.5, 1}, going from an extreme sub-sampling setting to the full
graph. Due to space constraints, full details for 0.05 and 0.1 are re-
ported in the extended version on the online repository, while their
implications are still discussed below. As in related works [26, 27],
we set the forward probability at p = 0.35, the backward probabil-
ity at pp = 0.2, the jump/restart probability at p, = 0.15, and set the
walk length at 10. We have implemented all methods in PyTorch,
testing each method’s implementation until we achieved a similar
performance on the original datasets reported. For parameter tun-
ing, we apply Asynchronous Successive Halving (ASHA) [28], a
method based on multi-armed bandit methodology of high initial
exploration of parameter combinations, before focusing on fewer
combinations. Methods are tuned on the full graphs, using the
same hyperparameters in all sampling settings. We tried tuning on

Figure 5: INMO’s relative performance.

a € {0.2,0.5} using PS getting similar performance as tuning on
the full graph on these ratios. PS has been used in the industry, we
thus want to validate its performance in other settings [49]. All con-
figurations are available on the online repository with additional
experimental results in [22]. We use an NVIDIA A10 GPU, dual
processor setup with Intel Xeon Gold 6326, and 256 GB RAM.

Features. For feature extraction, we utilize the average textual em-
beddings of Sentence-BERT [35] for all items, with the texts being
the first paragraph of the Wikipedia page, when available, other-
wise Wikidata, for ML-20m and AB, and review text for YD. Fur-
thermore, we compute the node degrees normalized by centering
around zero and scaling to unit variance. The scaling is calculated
for the train features and applied to the validation and test fea-
tures. However, the descriptions of entities can be non-descriptive
(see https://www.wikidata.org/wiki/Q20656232). We, therefore, use
TransR [29] to generate embeddings for all descriptive entities.

Evaluation metrics. We rank all items in the test set, as ranking a
subset has been shown to skew the results [36]. We exclude items
already interacted with since multiple ratings between the same
user and item cannot occur [44]. We use four standard ranking
measures: NDCG@K, recall@k, precision@k, and PR-AUC, and
one serendipity measure, coverage@k [1]; reporting the average
performance over all users. A high coverage is not indicative of the
recommendation performance, as a RS giving random recommenda-
tions would have high coverage but low ranking ability; therefore,
it cannot be looked at in isolation. However, for brevity, we only
report HR and NDCG in the comparison table Table 4, as the other
results confirm the same findings we report here.

https://www.wikidata.org/wiki/Q20656232

Sampling viability. We report the sampling time and maximal mem-
ory usage during a run (implemented in Python without any par-
allelization) for sampling ratio 0.5 in Table 3. We note that it is
possible to greatly optimize the sampling process for even faster
running times. Yet, we see that their running time is already orders
of magnitude shorter than the respective training time, confirming
the possible gain in runtime reduction when adopting sampling.

We see that FFB is often the method with the longest running
time. That is because its sampling strategy selects only few nodes
at every iteration, i.e., each step burns only one or two neighbors,
meaning a higher number of iterations compared to a sampler
constructing a densely connected neighborhood. To select more
nodes we tried increasing the sampling probabilities s.t. the bino-
mial mean would be around 10. With higher sampling likelihood,
the sampling speed reduces to that of R]. Furthermore, we see that
the KG sampling of FF is also considerably faster than that of other
methods for the AB dataset. This is due to presence of nodes with
high degree. We analyzed the degree distribution and found a great
skew in the degrees, as the 99.99th percentile has around 2k edges,
while the 99.999th percentile has 100k edges in the AB KG. We
note sampling large portions of edges of few hubs is not desirable
leading to poor distribution similarities as seen for AB in Figure 3.

We use the Kolmogorov-Smirnov D-statistic over the cumulative
distribution function of the in- and out-degrees for comparing the
shapes of the distributions to evaluate the sampling methods ability
to maintain representative structural properties of the original
graph [26]. Lower values indicate a greater alignment between the
sampled graph and the original graph. We sample for each sampling
method and ratio combination five times, plotting the D-statistics
for each node-type in Figure 3. Due to the heterogeneous nature of
the KG, the non-uniform degree distributions, and the restriction
to consider already samples entities, the sampling methods have
more difficulty in approximating the structural properties of the
KG. Nonetheless, it would not make sense to relax the restriction on
the seeding of the sample for the KG, since information detached
from the items would be irrelevant for item recommendation.

Current sampling methods treat edges and nodes as homoge-
neous. They ignore node types, likely causing distribution misalign-
ment across types. Future work should develop methods tailored
to bipartite CGs and heterogeneous graphs like KGs.

RQ1 & RQ2. The summary of the result in terms of NDCG and AUC
compared to the reduction in training time is reported in Table 4.
We observe similar trends also for the other metrics not reported
here. Choice of the best sampler depends on the dataset, ratio,
and RS used. Interestingly, while PS is able to better capture the
CG’s degree distribution (Figure 3), TS is the best performing of the
two in most cases. Further, we notice that both PS and TS perform
well in many settings, often being best or second best performing.
For example, for the AB dataset, TS and PS are the best performing
for all recommender methods for most sampling ratios. Yet, we see
a trend where TS becomes the best performing for all datasets and
methods when « < 0.1. This indicates that for small datasets data
recency is important compared to capturing correct distributions
and that it is very important in sparse situations for CF.

As it would be expected, in most cases, reducing the amount of
training data reduces the prediction quality of the models. This is

most clearly seen on the YD, where all methods have trouble gener-
alizing properly without the full datasets, regardless of the sampling
method. When sampling 50% of the graph, the final prediction qual-
ities across the sampling methods present only limited differences.
For high ratios the sampling method is less important as suf-
ficient users, items and ratings have been sampled regardless of
sampling methodology. Yet, as previously stated, this is not true at
lower ratios. This raises the question on the data-efficiency of these
methods, i.e., whether these recommendation systems are actually
able to infer inductive bias from complex graph structures or are
just aggregators of collaborative signal (discussed in RQ4). When
sampling 5% to 10%, none of the methods can recommend
well compared to their baseline performance on the whole
graph. The only exception is for the dense and popularity biased
ML-20m dataset. However, all methods perform better than a naive
TopPop recommender [10] with only 5% of the data, except GInRec
on YD. Only INMO is capable of decent recommendations when us-
ing 20% on the AB dataset and maintains performance with 50% of
the data for the YD. We find neither node-type distribution nor
rating time similarity correlate with ranking performance, as
illustrated in Figure 4. For example, for YD with r = 0.1, we find that
PS performs better than RW in all cases; however, RW’s user ratio is
far closer to the train graphs ratio than PS’s. For rating distribution,
there is little difference between TS and PS performance. Yet, PS
almost perfectly matches the base graphs’ rating skew while TS is
far off. There appears to exist a slight correlation between the
degree distribution CG and the performance of the sampler
exists, as PS and TS are frequently best performing and have the
lowest d-statistics. However, the absolute value is not indicative of
performance and cannot be compared across datasets.

RQ3. Generally, reducing the amount of training data significantly
reduces the training time. Yet, when using 50% of the data, Pin-
SAGE’s training time does not decrease at the same rate of other
methods. This is likely due to the item-item loss function. For Pin-
SAGE and GInRec we see that longer running times often
correspond to better ranking performance. These methods
jointly learn input feature representations, aggregation functions,
and ranking composition. Therefore, learning to represent and ag-
gregate node features may require more computation and data to
learn inductive biases. In contrast, INMO only optimizes initial
node embeddings for the ranking objective. The reduced training
time is particularly important for INMO, which does not use node
sampling, having exponential training time w.r.t. the number of
edges (see Figure 5). INMO has a time complexity of O(L|R|d) for
propagation. This is required for each edge in the train graph, lead-
ing to an epoch complexity of O(L|R|%d), where L is the number
of layers and d the dimensionality.

On YD, we observe a 4% decrease in performance and 86% de-
crease in training time. Although it seems like a substantial decline,
a 4% decrease may effectively be negligible in practice. As
the HR for INMO is 0.17 and decreases to 0.163 when r=0.5, this
means that in a ranked list of 20 items, the method would show at
least one relevant item in both settings (on average). Even when
INMO’s HR performance is reduced by 30% for r=0.05, it still recom-
mends at least one relevant item in the top 20, with a HR of 0.119.
Furthermore, the sampling maintains the ordering of methods in

Table 4: Results of methods at different sampling ratios and with different methods. All results are measures at k = 20, except
AUC which evaluates the complete list, with running time in hours. Bold indicates the best performing within a group.

GInRec INMO PinSAGE

ML-1M AB YD ML-1M AB YD ML-1M AB YD
HRNDCG Time| HRNDCG Time| HRNDCG Time| HRNDCG Time| HRNDCG Time| HRNDCG Time| HRNDCG Time| HRNDCG Time| HRNDCG Time
-- 0.734 0.202 0.9 0.132 0.029 2.7 0.122 0.021 7.90.663 0.185 1.2/ 0.154 0.038 7.3| 0.171 0.033 45.5/0.583 0.152 1.1] 0.122 0.027 3.0/ 0.136 0.024 113
FF | -5.1% -10.3% -75.5%| -34.2% -33.9% -82.6%|-62.5% -68.0% -84.3%|-5.8% -12.9% -87.0%|-13.3% -19.3% -75.5%|-20.5% -26.5% -90.0%| -1.5% -15.3% -87.7%| -26.6% -33.7% -85.3%|-41.7% -50.7% -89.4%
FFB| -9.5% -12.6% -78.0%| -31.0% -30.1% -79.5%| -58.2% -64.0% -61.6%|-3.6% -6.6% -85.2%| -9.1% -11.3% -74.5%|-18.8% -24.5% -94.2%|11.3% -0.0% -59.4%| -27.3% -29.4% -83.6%| -30.2% -34.5% -64.7%
0.20 PS | -6.9% -8.7% -68.4%| -38.8% -29.3% -89.1%|-61.5% -68.9% -82.5%|-1.4% -1.1% -84.5%| -6.9% -9.4% -78.4%|-15.5% -20.2% -88.3%| -3.9% -3.4% -51.7%| -25.5% -31.6% -87.3%|-35.5% -42.3% -81.6%
RJ [-10.0% -15.7% -83.3%| -35.8% -37.6% -81.6%| -64.5% -70.8% -73.0%|-3.7% -8.6% -86.8%| -6.2% -6.3% -73.2%|-22.2% -27.3% -92.6%| -4.9% -4.0% -74.0%| -17.8% -26.5% -82.0%| -41.1% -47.2% -89.6%
RW|-12.3% -16.4% -81.1%| -35.6% -27.5% -89.9%| -60.3% -66.6% -82.1%|-3.6% -7.1% -84.7%| -3.8% -5.3% -75.9%|-18.3% -24.4% -90.7%| 8.2% -0.6% -79.1%|-45.5% -56.7% -92.5%| -34.6% -41.9% -69.8%
TS | -4.1% -6.6% -69.7%|-17.1% -2.9% -85.0%|-48.5% -55.0% -58.5%|-7.0% -7.6% -86.0%|-14.2% -16.8% -75.1%|-15.5% -19.5% -93.2%| 6.7% -0.9% -59.3%|-15.5% -21.0% -86.1%|-20.5% -25.3% -73.0%
*NS|-42.8% -71.7% -| -68.6% -69.4% -|-92.2% -94.2% -1-3.8% -7.0% -1-39.2% -43.1% -|-24.3% -31.5% -| 1.8% -32.7% -| -46.0% -44.6% -|-82.1% -86.5% -
FF | -7.7% -10.5% -60.2%|-28.4% -29.5% -77.8%|-46.5% -52.6% -67.9%|-0.4% -3.0% -67.0%| -1.8% -0.6% -69.7%| -6.6% -10.0% -89.5%| -3.3% -3.2% -55.0%| -20.7% -30.7% -74.0%| -18.3% -21.8% -41.3%
FFB| -6.7% -8.9% -72.5%|-29.1% -29.1% -82.5%| -47.3% -53.1% -63.7%[-0.4% -0.4% -70.9%| -2.1% -1.0% -73.3%| -4.4% -6.0% -86.2%| 9.2% 6.1% 2.9%|-18.4% -19.7% -55.6%|-14.8% -17.3% -6.1%
0.50 PS | -5.2% -4.9% -50.8%|-30.5% -30.7% -66.5%|-49.9% -57.7% -73.9%|-0.8% -0.4% -70.8%| -5.6% -6.5% -75.1%| -4.6% -6.3% -87.5%|13.2% 6.4% -14.3%| -10.2% -13.8% -4.0%|-16.6% -19.3% -16.3%
RJ | -5.1% -5.9% -17.4%|-26.4% -26.1% -63.1%|-42.3% -50.2% -48.5%|-0.6% -2.0% -65.8%| -0.4% 1.2% -80.1%| -5.2% -7.1% -85.4%| 4.8% 2.0% -26.1%| -9.1% -14.0% -49.4%|-15.5% -18.6% -18.5%
RW| -8.5% -16.6% -55.4%|-19.6% -15.7% -61.2%| -47.9% -55.4% -66.9%|-1.5% -3.2% -63.6%| -3.7% -0.8% -64.7%| -4.6% -5.8% -85.1%| -0.1% 0.4% -6.4%|-12.5% -15.9% -50.9%|-16.7% -20.4% -21.2%
TS | -53% -6.1% -55.1%|-27.1% -25.6% -80.7%| -42.9% -50.6% -57.3%|-5.1% -5.6% -73.7%|-10.4% -10.6% -78.7%| -5.8% -7.2% -89.8%| 7.5% 2.8% -34.7%| -8.3% -11.2% -65.8%|-19.1% -23.8% -70.1%
*NS|-18.0% -42.0% -| -48.8% -47.5% -|-78.3% -84.3% -1-1.8% -4.0% -1-19.1% -20.1% -l -8.5% -11.9% --21.0% -50.5% -| -41.6% -46.0% -|-70.1% -75.1% -

Defined in RQ4.

Table 5: Summary of recommendations and insights for RQ1-RQ4

RQ1: Samplers RQ2: Sampling ratio

RQ3: Training time

‘RQ4: Recommenders

80% time reduction at r = 0.5 for GNN-based
recommender without neighborhood sampling.
Attention requires longer time for apt perfor-

TS/PS perform best in most
settings.

For ratios <0.10 use TS.
Samplers matching the degree
distribution perform better.

r=0.5 maintains recommendation per-
formance with great time savings.
r<0.10 does not maintain performance
on datasets with less than 2.5mil ratings
unless popularity biased.

ance.

possible.

almost all cases. Thus, it is generally possible to compare mod-
els on the sample to infer their relative performance on the full
graph [12, 32]. In almost all cases, the methods performance with
r € {0.05,0.10} was better than a naive TopPop [10] recommender,
only GInRec performing worse on YD. INMO obtained up to 5x
the performance for NDCG on 0.05 compared to TopPop.
Finally, we find RSs give less diverse recommendations when
trained with less data. In Figure 5, we highlight how INMO’s
coverage increases as more data is given to the method (similar
trends are exhibited by the other baselines). More training data
allow the method methods’ to make diverse recommendations A
small subset of items may be sufficient for the ML-20m dataset,
but has high impact on the performance for other datasets. Future
research should ensure RSs are capable of providing diverse
recommendations even when little data is available.

RQ4. INMO seems to be the most robust method to downsampling.
Interestingly, while GInRec uses external knowledge, this seems to
reduce the effectiveness of the method when there is little informa-
tion available. The current methods cannot effectively exploit
the KGs’ signal. Interestingly, PinSAGE performs best on ML-20m,
likely due to ML-20m being popularity biased and as the textual
attributes of movies are of far higher quality than what is available
for both AB and YD. However, all methods struggle on the YD. The
dataset is likely more difficult compared to others as a dramatic
change in most popular items occurs due to COVID, as seen in
Figure 2. To investigate whether methods prioritize collaborative
signal or structural information, we design a NichéSampler (NS)
sampling items with the fewest user ratings. For methods that learn
inductive bias, the features present in the graph used for training
dictates which inductive biases are learned by the model. Thus, with
a training graph with only niche items, if the methods maintains
the same predictive performance, it is because they rely only on

Subsampling >0.20 for hyperparameter tuning is

Learned features are superior in most settings.
‘When side information or KG features are key
to performance, ensure enough data is retained
to cover relevant entities.

Methods learning collaborative bias are less
dependent on the samplers.

collaborative signal, disregarding learned rules. Looking at Table 4,
we observe that all methods show a performance drop under NS,
but GInRec and PinSAGE see a larger drop in performance. There-
fore, all methods learn some form of inductive bias. Yet, INMO
likely relies more on the collaborative signal, which is expected as it
does not have any attention mechanisms on edges. This means that
collaborative filtering can be learned from small samples,
while more robust inductive biases from graph structures requires
different sampling techniques and learning architectures. TS and PS
perform well at lower ratios, suggesting they capture meaningful
signals. Thus, leveraging time and representative user selection
offers a promising path for improved sampling.

6 CONCLUSION AND FUTURE WORK

We investigate the practical implications of employing subsampled
training data with different graph-based sampling methodologies
when training inductive RSs. Inductive techniques are able to pro-
vide predictions for out-of-samples data and past evaluations have
exploited this ability to reduce training time. Our evaluation shows
that the PinSAGE and Temporal sampling approach produces the
most reliable samples. Yet, for all RSs, at least 50% of the training
graph is required to maintain prediction accuracy except for popu-
larity biased datasets where < 10% is sufficient. Nonetheless, the
most robust method, INMO, showcases an important reduction in
training time, with a decrease of over 80%, already with 50% of
the graph. Future research could design sampling methods for and
increase the robustness of inductive recommendation methods.

ACKNOWLEDGMENTS

This research was partially funded by the Danish Council for In-
dependent Research (DFF) under grant agreement no. DFF-8048-
00051B and the Poul Due Jensen Fond (Grundfos Foundation).

REFERENCES

(1]

(2]

3

=

[10]

(11

[12]

[13]

[14

[15]

[16

[17]

[18]

[19

[20]

[21

[22]

[23

[24]

[25

[26]

Gediminas Adomavicius and YoungOk Kwon. 2012. Improving Aggregate Rec-
ommendation Diversity Using Ranking-Based Techniques. TKDE’12 (2012),
896-911.

Russa Biswas, Lucie-Aimée Kaffee, Michael Cochez, Stefania Dumbrava, Theis E.
Jendal, Matteo Lissandrini, Vanessa Lopez, Eneldo Loza Mencia, Heiko Paul-
heim, Harald Sack, Edlira Vakaj, and Gerard de Melo. 2023. Knowledge Graph
Embeddings: Open Challenges and Opportunities. TGDK 1, 1 (2023), 4:1-4:32.
Anders H. Brams, Anders L. Jakobsen, Theis E. Jendal, Matteo Lissandrini, Peter
Dolog, and Katja Hose. 2020. MindReader: Recommendation over Knowledge
Graph Entities with Explicit User Ratings. In CIKM 20. Association for Computing
Machinery, 2975-2982.

Desheng Cai, Shengsheng Qian, Quan Fang, Jun Hu, and Changsheng Xu. 2023.
User Cold-Start Recommendation via Inductive Heterogeneous Neural Network.
TOIS 23 (2023).

Emrah Cem, Mehmet Engin Tozal, and Kamil Sarag. 2013. Impact of sampling
design in estimation of graph characteristics. In IPCCC’13. 1-10.

Hao Chen, Zefan Wang, Feiran Huang, Xiao Huang, Yue Xu, Yishi Lin, Peng He,
and Zhoujun Li. 2022. Generative Adversarial Framework for Cold-Start Item
Recommendation. In SIGIR’22.

Xiaohui Chen, Jiankai Sun, Taiqing Wang, Ruocheng Guo, Li-Ping Liu, and
Aonan Zhang. 2023. Graph-Based Model-Agnostic Data Subsampling for Rec-
ommendation Systems. In KDD’23. 3865-3876.

Sundeep Prabhakar Chepuri and Geert Leus. 2017. Graph Sampling for Covari-
ance Estimation. TSIPN’17 (2017), 451-466.

Mads Corfixen, Magnus Olesen, Thomas Heede, and Christian Filip Pinderup
Nielsen. 2023. The Yelp Collaborative Knowledge Graph. https://doi.org/10.
5281/zenodo.8049832

Paolo Cremonesi, Yehuda Koren, and Roberto Turrin. 2010. Performance of
recommender algorithms on top-n recommendation tasks. In RecSys’10. 39-46.
Edoardo D’Amico, Khalil Muhammad, Elias Z. Tragos, Barry Smyth, Neil Hurley,
and Aonghus Lawlor. 2023. Item Graph Convolution Collaborative Filtering for
Inductive Recommendations. In ECIR’23.

Noemi DeCastro-Garcia, Angel Luis Mufioz Castafieda, David Escudero Gar-
cia, and Miguel V. Carriegos. 2019. Effect of the Sampling of a Dataset in
the Hyperparameter Optimization Phase over the Efficiency of a Machine
Learning Algorithm. Complex. 2019 (2019), 6278908:1-6278908:16. https:
//doi.org/10.1155/2019/6278908

Yuntao Du, Xinjun Zhu, Lu Chen, Ziquan Fang, and Yunjun Gao. 2023. MetaKG:
Meta-Learning on Knowledge Graph for Cold-Start Recommendation. TKDE’23
(2023).

Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-Agnostic Meta-
Learning for Fast Adaptation of Deep Networks. In ICML’17.

William L Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In NeurIPS’17. 1025-1035.

F Maxwell Harper and Joseph A Konstan. 2015. The movielens datasets: History
and context. TIIS’15 (2015), 1-19.

Mohammad Hashemi, Shengbo Gong, Juntong Ni, Wengqi Fan, B. Aditya Prakash,
and Wei Jin. 2024. A Comprehensive Survey on Graph Reduction: Sparsification,
Coarsening, and Condensation. In [JCAI’24. 8058-8066.

Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng
Wang. 2020. Lightgen: Simplifying and powering graph convolution network
for recommendation. In SIGIR20. 639-648.

Zengfeng Huang, Shengzhong Zhang, Chong Xi, Tang Liu, and Min Zhou. 2021.
Scaling Up Graph Neural Networks Via Graph Coarsening. In KDD’21, Feida
Zhu, Beng Chin Ooi, and Chunyan Miao (Eds.). 675-684.

Bei Hui, Lizong Zhang, Xue Zhou, Xiao Wen, and Yuhui Nian. 2022. Personalized
recommendation system based on knowledge embedding and historical behavior.
Appl. Intell’22 (2022).

Theis E. Jendal, Matteo Lissandrini, Peter Dolog, and Katja Hose. 2023. GInRec:
A Gated Architecture for Inductive Recommendation using Knowledge Graphs.
In KaRS’23 (CEUR Workshop Proceedings). 80-89.

Theis E. Jendal, Matteo Lissandrini, Peter Dolog, and Katja Hose. 2025. The Limits
of Graph Samplers for Training Inductive Recommender Systems: Extended
results. arXiv:2505.14241 [cs.IR]

Wei Jin, Lingxiao Zhao, Shichang Zhang, Yozen Liu, Jiliang Tang, and Neil Shah.
2022. Graph Condensation for Graph Neural Networks. In The Tenth International
Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022.
OpenReview.net. https://openreview.net/forum?id=WLEx3Jo4QaB

Maciej Kurant, Minas Gjoka, Yan Wang, Zack W. Almquist, Carter T. Butts,
and Athina Markopoulou. 2012. Coarse-grained topology estimation via graph
sampling. In WOSN’12. 25-30.

Hoyeop Lee, Jinbae Im, Seongwon Jang, Hyunsouk Cho, and Sehee Chung. 2019.
Melu: Meta-learned user preference estimator for cold-start recommendation. In
SIGKDD’19.

Jure Leskovec and Christos Faloutsos. 2006. Sampling from large graphs. In
SIGKDD’06. ACM, 631-636.

[27

(28]

[29

(30]

(32]

[33

[35

[36

[37

(38]

[39

[41]

[42

[43]

[44]

[46

[47

(48

[49]

[50

(52

(53]

Jure Leskovec, Jon M. Kleinberg, and Christos Faloutsos. 2005. Graphs over time:
densification laws, shrinking diameters and possible explanations. In SIGKDD’05.
ACM, 177-187.

Liam Li, Kevin G. Jamieson, Afshin Rostamizadeh, Ekaterina Gonina, Jonathan
Ben-tzur, Moritz Hardt, Benjamin Recht, and Ameet Talwalkar. 2020. A System
for Massively Parallel Hyperparameter Tuning. In MLSys’20. mlsys.org.

Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. 2015. Learning
entity and relation embeddings for knowledge graph completion. In AAAI'15.
David C. Liu, Stephanie Kaye Rogers, Raymond Shiau, Dmitry Kislyuk, Kevin C.
Ma, Zhigang Zhong, Jenny Liu, and Yushi Jing. 2017. Related Pins at Pinterest:
The Evolution of a Real-World Recommender System. In WWW’17 Companion.
583-592.

Xin Liu, Mingyu Yan, Lei Deng, Guogqi Li, Xiaochun Ye, and Dongrui Fan. 2022.
Sampling Methods for Efficient Training of Graph Convolutional Networks: A
Survey. IEEE CAA J. Autom. Sinica 9, 2 (2022), 205-234. https://doi.org/10.1109/
JAS.2021.1004311

Matteo Montanari, Cesare Bernardis, and Paolo Cremonesi. 2022. On the impact
of data sampling on hyper-parameter optimisation of recommendation algo-
rithms. In SAC ’22: The 37th ACM/SIGAPP Symposium on Applied Computing,
Virtual Event, April 25 - 29, 2022, Jiman Hong, Miroslav Bures, Juw Won Park, and
Tomas Cerny (Eds.). ACM, 1399-1402. https://doi.org/10.1145/3477314.3507158
Jianmo Ni, Jiacheng Li, and Julian McAuley. 2019. Justifying Recommendations us-
ing Distantly-Labeled Reviews and Fine-Grained Aspects. In EMNLP-IJCNLP’19.
Association for Computational Linguistics, 188-197.

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The
PageRank Citation Ranking: Bringing Order to the Web. Technical Report. Stanford
InfoLab.

Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks. In EMNLP-IJCNLP’19. 3982-3992.

Steffen Rendle. 2019. Evaluation metrics for item recommendation under sam-
pling. arXiv preprint arXiv:1912.02263 (2019).

Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-
Thieme. 2009. BPR: Bayesian personalized ranking from implicit feedback. In
UAI'09. 452-461.

Juan Manuel Rodriguez and Antonela Tommasel. 2024. Leveraging User History
with Transformers for News Clicking: The DArgk Approach. In RecSysChal-
lenge’24.

Yehjin Shin, Jeongwhan Choi, Hyowon Wi, and Noseong Park. 2024. An Attentive
Inductive Bias for Sequential Recommendation beyond the Self-Attention. In
AAAT24.

Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang.
2019. BERT4Rec: Sequential Recommendation with Bidirectional Encoder Rep-
resentations from Transformer. In CIKM’19.

Qingyun Sun, Ziying Chen, Beining Yang, Cheng Ji, Xingcheng Fu, Sheng Zhou,
Hao Peng, Jianxin Li, and Philip S. Yu. 2024. GC-Bench: An Open and Unified
Benchmark for Graph Condensation. CoRR (2024).

Nicolas Tremblay and Andreas Loukas. 2020. Approximating Spectral Clustering
via Sampling: A Review. 129-183.

Shuai Wang, Kun Zhang, Le Wu, Haiping Ma, Richang Hong, and Meng Wang.
2021. Privileged Graph Distillation for Cold Start Recommendation. In SIGIR’21.
Xiang Wang, Xiangnan He, Yixin Cao, Meng Liu, and Tat-Seng Chua. 2019.
Kgat: Knowledge graph attention network for recommendation. In SIGKDD’19.
950-958.

Qitian Wu, Hengrui Zhang, Xiaofeng Gao, Junchi Yan, and Hongyuan Zha. 2021.
Towards Open-World Recommendation: An Inductive Model-based Collaborative
Filtering Approach. In ICML21.

Yunfan Wu, Qi Cao, Huawei Shen, Shuchang Tao, and Xueqi Cheng. 2022. INMO:
A Model-Agnostic and Scalable Module for Inductive Collaborative Filtering. In
SIGIR’22. 91-101.

Zhenbang Xiao, Shunyu Liu, Yu Wang, Tongya Zheng, and Mingli Song. 2024.
Disentangled Condensation for Large-scale Graphs. CoRR (2024).
Yelp. 2025. Yelp Open Dataset. https://www.yelp.com/dataset/.
2025-05-20.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,
and Jure Leskovec. 2018. Graph convolutional neural networks for web-scale
recommender systems. In SIGKDD’18. 974-983.

Chengkun Zhang, Hongxu Chen, Sixiao Zhang, Guandong Xu, and Junbin Gao.
2022. Geometric Inductive Matrix Completion: A Hyperbolic Approach with
Unified Message Passing. In WSDM’22.

Chuxu Zhang, Huaxiu Yao, Lu Yu, Chao Huang, Dongjin Song, Haifeng Chen,
Meng Jiang, and Nitesh V Chawla. 2021. Inductive Contextual Relation Learning
for Personalization. TOIS21 (2021).

Muhan Zhang and Yixin Chen. 2019. Inductive Matrix Completion Based on
Graph Neural Networks. In ICLR’19.

Xu Zhao, Yi Ren, Ying Du, Shenzheng Zhang, and Nian Wang. 2022. Improving
Item Cold-start Recommendation via Model-agnostic Conditional Variational
Autoencoder. In SIGIR’22.

Accessed:

https://doi.org/10.5281/zenodo.8049832
https://doi.org/10.5281/zenodo.8049832
https://doi.org/10.1155/2019/6278908
https://doi.org/10.1155/2019/6278908
https://arxiv.org/abs/2505.14241
https://openreview.net/forum?id=WLEx3Jo4QaB
https://doi.org/10.1109/JAS.2021.1004311
https://doi.org/10.1109/JAS.2021.1004311
https://doi.org/10.1145/3477314.3507158
https://www.yelp.com/dataset/

	Abstract
	1 Introduction
	2 Background & Preliminaries
	3 Related Work
	4 Methodology
	4.1 Sampling methods
	4.2 Inductive recommenders

	5 Experiments
	6 Conclusion and future work
	Acknowledgments
	References

