
The Limits of Graph Samplers for Training Inductive
Recommender Systems

Theis E. Jendal

Aalborg University

tjendal@cs.aau.dk

Matteo Lissandrini

University of Verona

matteo.lissandrini@univr.it

Peter Dolog

Aalborg University

dolog@cs.aau.dk

Katja Hose

TU Wien

katja.hose@tuwien.ac.at

ABSTRACT
Inductive Recommender Systems are capable of recommending for

new users and with new items thus avoiding the need to retrain

after new data reaches the system. However, these methods are still

trained on all the data available, requiring multiple days to train a

singlemodel, without counting hyperparameter tuning. In this work

we focus on graph-based recommender systems, i.e., systems that

model the data as a heterogeneous network. In other applications,

graph sampling allows to study a subgraph and generalize the

findings to the original graph. Thus, we investigate the applicability

of sampling techniques for this task. We test on three real world

datasets, with three state-of-the-art inductive methods, and using

six different sampling methods. We find that its possible to maintain

performance using only 50% of the training data with up to 86%

percent decrease in training time; however, using less training data

leads to far worse performance. Further, we find that when it comes

to data for recommendations, graph sampling should also account

for the temporal dimension. Therefore, we find that if higher data

reduction is needed, new graph based sampling techniques should

be studied and new inductive methods should be designed.

PVLDB Reference Format:
Theis E. Jendal, Matteo Lissandrini, Peter Dolog, and Katja Hose. The

Limits of Graph Samplers for Training Inductive Recommender Systems .

PVLDB, 18(8): XXX-XXX, 2025.

doi:XX.XX/XXX.XX

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/GraphRecommendation/gsampling.

1 INTRODUCTION
Recommender Systems (RSs) are used inmany applications, ranging

from online retail stores to advertisement platforms. These systems

utilize historic interactions between users and items to estimate

future user behaviors, with the hypothesis that users with similar

historical preferences will exhibit similar behavior in the future;

often referred to as Collaborate Filtering (CF) [21]. Most approaches

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 18, No. 8 ISSN 2150-8097.

doi:XX.XX/XXX.XX

capture user preferences and item concepts as dense vector rep-

resentations, called embeddings, within high-dimensional spaces,

such that similar users and items have similar embeddings [21, 46].

To build these representations, deep neural networks learn vector

representations assigned to all users and items often through dictio-

nary encodings. These are called transductive techniques [21, 46].

This also means that, when a new user or item is added to the sys-

tem, in theory they are required to re-train the model to compute

the missing embeddings.

Recently, a lot of focus has been placed on inductive RSs due to

their ability to predict for unseen users and items [21, 46, 49, 50, 52].

These systems do not learn a unique vector for each user and item

but instead learn to generate vectors based on their features and con-

nections. A transductive RS would not be able to recommend “The

Dark Knight” in Figure 1 as it is not present in the train graph. In

contrast, an inductive RS can recommend items (and to users) absent

during training but introduced at inference time [21, 25, 40, 45, 46].

Among inductive methods, only a few can recommend effectively

for both new users and items (see Table 1). Yet, the training time

of these inductive methods can be very slow, taking up to 2 days
to train on a Collaborative Graph (CG) with ∼175𝑘 users and ∼77𝑘
products. Such long training times are particularly impactful for

hyperparameter tuning, where multiple training cycles are often re-

quired. Therefore, recent works study how to sample training data

to decrease tuning time [12, 32]. They focus on hyperparameter tun-

ing, perform random sampling, and, most importantly, still require

the methods to train on the full data afterwards. This is particularly

limiting if we consider that the graphs continuously evolve, with

millions of items being added each day in some cases [30].

In the past, graph sampling has been proven effective for study-

ing important graph properties on a smaller scale [26]. Thus, in

this paper, we are interested in studying whether it is possible to

utilize graph sampling approaches to reduce the computational cost

and, hence, the training time in the training step of graph-based

RSs. Since inductive methods are capable of predicting for new

users and items, we, in theory, do not require any retraining of

the methods on the full dataset to be able to perform inference on

it and thus to recommend new items or to new users. When per-

forming graph sampling, current methods only sample within each

batch, reducing batch forward propagation time but maintaining

the number of batches in an epoch [31]. Therefore, they still go

through all available graph data. Instead, by subsampling the graph

before training, we effectively obtain a smaller graph structure and

thus reduce the training data that needs to be processed. We are

https://doi.org/XX.XX/XXX.XX
https://github.com/GraphRecommendation/gsampling
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/XX.XX/XXX.XX

CG

American
Hustle

Don Jon

The Prestige

Alex

Aiden

Max

Inception

Don Jon

The Prestige

Alex

Aiden

Inception

Inception

Christian Bale

Joseph
Gordon-Levitt

Christopher
Nolan

Heist
Action

Sci-Fi

Fiction

Tragedy

Drama

Crime Fiction
Don Jon

American
Hustle

The Prestige Christian Bale

Joseph
Gordon-Levitt

Christopher
Nolan Sci-Fi

Fiction

Drama

Crime Fiction
Don Jon

The Prestige

Inception

Christian Bale

Joseph
Gordon-Levitt

Christopher
Nolan

Heist
Action

Sci-Fi
Fiction

Tragedy

Drama

Crime Fiction

Don Jon

American
Hustle

The Prestige

The Dark
Knight

Train graph Sampled graph Test graph

KG

CG samples affect
KG sampling

*

*

Like

New like

Directed

Starred

Has genre

Subgenre of

New node

New user

American
Hustle

Don Jon

The Prestige

Alex

Aiden

Max

Inception

Kim The Dark
Knight

New item
**

Figure 1: Sampling example with illustration of sampling graph and the correlation between CG samples and KG samples.

interested in studying how to find a suitable subset of training

nodes, that allows us to obtain an induced subgraph that is repre-

sentative enough for the models to learn an inductive bias suitable

for future recommendation. The objective being to reduce training

time with as little impact on final predictive quality as possible.

While the graph-sampling literature has proposed many different

techniques [26, 31], these techniques have not been studied with

graph neural networks, the current de-facto standard architecture

in RSs. Further, only one sampling method (node-based random

sampling) and RS (PinSAGE [49]) has been tested directly on just a

sub-sampled graph. That is, the more established graph sampling

techniques have yet to be tested in this domain. We therefore study

three state-of-the-art inductive RSs on three real-world datasets

using six graph sampling methodologies, including the sampling

technique used in practice. In summary, in this work we present:

(1) The first extensive study of graph-based sampling prior to train-

ing for inductive recommender systems; (2) A holistic evaluation

of the limitations of current sampling methodologies and inductive

RSs; and (3) A set of interesting research directions for the design

of sampling techniques in inductive recommender systems. Our
results demonstrate that: (i) It is possible to maintain good pre-

dictive performance by training on 50% of the data while decreasing,

in this way, the training time by up to 85%. (ii) Temporal sampling

and user-based sampling perform best. (iii) For datasets with a high
popularity bias, it is often enough to use 5% of data for the system

to perform well; and (iv) with sampling ratios below 50% existing

sampling techniques and existing RSs still struggle to maintain

good performances; this raises the question of whether it is indeed

possible to design more representative sampling algorithms and

more robust learning approaches.

2 BACKGROUND & PRELIMINARIES
Similar to previous studies [21], we consider RSs using users, items,

and positive interactions as input data. Further, we also allow for

textual information and attributes attached to items. Formally, given

a set of usersU and a set of itemsI, we define an interaction matrix

I∈{0, 1} |U |× |I | , where I𝑢𝑖=1 if a user 𝑢∈U has interacted with an

item 𝑖∈I; otherwise I𝑢𝑖=0, i.e., the user has never interactedwith the
item. The interaction information can be structured as a bipartite

graph, known as a CG, where rating interactions appear as edges.

Thus, the CG can be defined as a G𝑐𝑔=⟨V𝑐𝑔,R𝑐𝑔⟩, whereV𝑐𝑔=U ∪
I are the users and items and R𝑐𝑔= {(𝑢, 𝑖) |I𝑢𝑖=1}. Furthermore,

we define the mapping function F𝑡 :U×I → N≥0, mapping all

rating interactions (edges) to a natural number representing the

time at which the rating was made, represented as 𝑡𝑖 in Figure 1.

The temporal aspect of ratings are important as trends and user

interests change over time. The evaluation of RSs should, therefore,

take temporal information into account when constructing train,

validation, and test sets.

In addition, a Knowledge Graph (KG) [2, 21, 44], a heterogeneous

graph containing entities and their semantic relations, is added to

model descriptive information for items (see Figure 1). A KG is a

directed labeled multigraph defined as the triple G𝑘𝑔=⟨V𝑘𝑔,R𝑘𝑔,L⟩
including nodes for both recommendable entities (items) and de-

scriptive entities (V𝑑𝑒𝑠𝑐=V𝑘𝑔 \ I). Furthermore, the labels L repre-

sent the semantic type of edges, s.t. the relationship can be defined

as R𝑘𝑔⊆V𝑘𝑔×L×V𝑘𝑔 . In this model, the KG does not represent the

collaborative signal; thus we combine the KG and CG as a Collabo-

rative Knowledge Graph (CKG) [21, 44], st,G𝑐𝑘𝑔=⟨V𝑐𝑘𝑔,R𝑐𝑘𝑔,L𝑐𝑘𝑔⟩,
whereV𝑐𝑘𝑔=V𝑘𝑔∪U,R𝑐𝑘𝑔=R𝑘𝑔∪{(𝑢, 𝑙𝑖𝑘𝑒𝑠, 𝑖) |I𝑢𝑖=1}, andL𝑐𝑘𝑔=L∪
{𝑙𝑖𝑘𝑒𝑠}. We further include a feature functionX:V𝑘𝑔→R𝑑

mapping

each entity to a feature vector representing, for instance, the textual

information for the node and the structure of G𝑘𝑔 .
We treat the recommender objective as a ranking problem. Thus,

a recommender is a function r𝑢,I=F𝜃 (X, I,G𝑘𝑔, 𝑢) parametrized

by learned parameters 𝜃 producing a ranking score for all items

in I according to the inferred preferences of user 𝑢. Thus, given

the ranking r𝑢 , it must hold that ∀𝑖, 𝑖′∈I, with 𝑖≠𝑖′, we have that
r𝑢,𝑖 > r𝑢,𝑖′ iff. the user 𝑢 prefers item 𝑖 over 𝑖′.

Given the above data model and a sampling ratio 𝛼 , a sampling

method S produces subgraphs G′𝑐𝑔⊏G𝑐𝑔 and G′
𝑘𝑔
⊏G𝑘𝑔 such that

|G′𝑐𝑔 |+|G′𝑘𝑔 | ≤ 𝛼 ·(|G𝑐𝑔 |+|G𝑘𝑔 |). As in prior work [49], our goal is to

train on the subgraphs G′𝑐𝑔 and G′𝑘𝑔 to learn the parameters for F𝜃
and perform inference on the full graph.

3 RELATEDWORK
In the inductive setting, we have users and items not seen during

training, for which the RS should be able to make recommendations.

This capability is crucial for real-world applications where users

and items are continuously added. Further, it allows to train on a

sub-graph while performing predictions for the entire graph.

Inductive Recommender Systems. There are multiple methods

for inductive recommendation, using different techniques ranging

from graph-based methods [21, 46] and transformer-based [35, 39],

to RSs based on variational encoders [53]. However, a large pool of

methods, as shown in Table 1, can make inductive recommenda-

tions for either only new users or only new items. Hence, a method

able to recommend to new users would still need to train on the

full set of items and vice versa. Meta-learning methods can recom-

mend to new users and with new items bu shortly training on the

new data [14, 25]. Numerous techniques propose using subgraphs

based on user-item pairs, alleviating the need for learned user and

item embeddings; instead, using the graph structure and distances

to generate embeddings [50, 52]. However, constructing distinct

subgraphs for each pair is prohibitively time-consuming and space-

consuming when ranking items [21, 46]. Several methods use user

meta-data to improve recommendations [4, 43], but such data is

often unavailable or limited to a small user subset [38]. Privacy and

data constraints limit interest in these methods.

Graph-based approaches use Graph Neural Networks (GNNs)

to perform aggregation over all nodes in the graph. To reduce the

training overhead, GraphSAGE [15] applies node sampling dur-

ing batch constructions, fixing the memory overhead. GraphSAGE

was designed for node classification and thus does not support

recommendation lists. Among inductive recommender systems,

INMO [46] instead learns initial embeddings for a subset of users

and items, which all nodes must aggregate from for their repre-

sentation. Thus, it does not use node features. Yet, for very large

graphs, using only neighbor sampling was insufficient, and Pin-

SAGE [49] thus applied both sampling of the training graph and

introduced a MapReduce framework to scale-out the computation.

Notably, PinSAGE is designed to recommend pins to boards, which

can be translated to users and items; however, contrary to users,

the boards are not explicitly modeled by PinSAGE and the method

thus focuses on item-item recommendation exploiting in this way

the collaborative signal. Instead of relying only on the collabora-

tive signal, GInRec [21] proposes using KG information, applying

relation-specific gates for aggregation, and simply representing

users by their neighbors. When subsampling the graph, we natu-

rally remove both users and items for which we are still interested

in recommending. Methods unable to handle such scenarios are,

therefore, not relevant. Consequently, the relevant recommenders

that we can examine are PinSAGE [49], INMO [46], and GInRec [21].

Table 1: Related recommendation methods, the Task they
support among (C) Node Classification, (R) Ranking, (P) Rat-
ing Prediction, and (SR) Sequential Recommendation.

Inductive
Model Task User Item Architecture Main Limitation
BERT4Rec [40] SR ✔ ✗ Transformer

Cannot recommend for

new items

IDCF [45] P ✔ ✗ Matrix factorization

ReBKC [20] P ✔ ✗ Multi-headed attention

IGCCF [11] R ✔ ✗ GNN

BSARec[39] SR ✔ ✗ Transformer

ICP [51] R ✗ ✔ NN

Cannot recommend for

new users
GAR [6] R ✗ ✔ Adversarial learning

CVAR [53] R ✗ ✔ Variational encoder

MeLU [25] R (✔) (✔) Meta-learning Requires retraining for

each new userMetaKG [13] R (✔) (✔) Meta-learning

IGMC [52] P ✔ ✔ Subgraph
User-item subgraph

construction is

cost-intensive

GIMC [50] P ✔ ✔ Subgraph

PGD [43] R ✔ ✔ Student/teacher model Requires user

metadataIHGNN [4] R ✔ ✔ GNN

GraphSAGE [15] C (✔) ✔ GNN

Not made for

recommendation

PinSAGE [49] R (✔) ✔ GNN w/ attention

INMO [46] R ✔ ✔ GCN

GInRec [21] R ✔ ✔ GNN w/ gates

Training efficiency. Multiple approaches exist for reducing the

graph sizes other than sampling[17]: (i) graph sparsification re-

moves edges and/or nodes to reduce the computational cost while

preserving performance. Using top-k nodes or edges has been used

based on various scoring metrics, such as PageRank [34] or through

a parameterized method [23]. (ii) Graph coarsening merges nodes

into supernodes either through reconstruction or other optimiza-

tion strategies [17]. The reconstruction can be either through spatial,

by merging pairs with the least effect on the reconstruction error,

or spectral methods, by comparing the eigenvalues or vectors. Al-

ternatively, it is possible to learn supernodes, representing a cluster

of the graph [19]. (iii) Graph condensation, constructs a synthetic

graph for which a method can be trained on with similar perfor-

mance [17]. They use gradient matching between a method learned

on the original graph and the synthetic graph, distribution match-

ing of the properties, or trajectory matching. Sparsification and

condensation methods are usually designed for node classification

and almost always rely on labeled nodes [17, 41]. Furthermore, the

condensation methods can be both time and space intesive [41, 47].

Sampling of graphs has been used for approximate spectral clus-

tering [42], for topology estimation [24], estimating graph char-

acteristics [5], and covariance estimation [8]. However, none of

these study node embedding methods. Many GNN methods ap-

ply sampling during training, requiring recomputation at each

batch. They can be grouped largely into node-wise, layer-wise,

and subgraph-based methods [31]. Nevertheless, the sampling is

always performed on the full train graph, repeatedly, which can be

infeasible in practice. Within hyperparameter optimization, multi-

ple methods exist to decrease tuning time, with one branch focusing

on dataset sampling [12, 32]. However, after finding optimal pa-

rameters, the methods still require training on the full graph due

to working with transductive methods. Other works use sampling

to adaptively select negative sampling for faster training; however,

they still require all positive samples [7]. Instead, PinSAGE [49] was

shown to be able to train on a random uniform sampling over the

graph. Specifically, sampling 20% of all graph boards that, for their

dataset, proved to have negligible impact on performance. However,

the final graph after sampling still contained multiple millions of

nodes and their graph was not the usual bipartite or multi-partite

graph. Thus, the question about which sampling technique is more

effective and what are the actual effects on different dataset size

and domains remains open. For example, random node sampling

would sample sporadic nodes and create loosely connected graphs,

which is less suitable for graph convolution methods.

Therefore, for the first time, we study different graph-based

sampling techniques for state-of-the-art inductive methods. We

choose to focus on well established sampling methods that ensure

semi-coherent graph structures [26].

4 METHODOLOGY
We detail here the sampling methods and the inductive recom-

mender systems used. For the recommenders, we describe only the

most important parts contributing to their performance.

4.1 Sampling methods
We evaluate two standard graph sampling approaches described

as the most scalable and effective for reducing the size of very

large graphs and designed specifically for their ability to preserve

structural properties of the graphs [26]. The sampling technique

adopted by PinSAGE [49], and a simple baseline taking into account

the temporal information on edges. We perform node sampling for

all methods, producing an induced subgraph where all connecting

edges among the sampled nodes are preserved. When sampling

from the KG, we limit the starting nodes to nodes for the CG.

Forest Fire (FF) [27]. FF simulates a tree burning process, where

nodes ignite neighbors based on probabilities. It uses two edge prob-

abilities: forward 𝑝 𝑓 and backward 𝑝𝑏 . We test two edge-sampling

methods: FFB with a binomial mean of (1 − 𝑝)−1 [27], and FF with

mean 𝑛𝑝 . The latter is greedier in selecting edges when encounter-

ing a hub, thus terminating earlier, but it produces very skewed

distributions, as shown in the experimental section. Given a random

starting node, the method ignites both backward and forward-going

edges; the new burning nodes can now also burn their neighbors,

and thus, the forest fire continues. If no new burning nodes exist, a

new random start node is selected. We present the FF algorithm in

Figure 2 to illustrate the use of the sampled input nodes.

RandomWalk (RW) and Random Jump (RJ) [34]. RW ran-

domly selects a starting node and performs random walks from it

with a restart probability 𝑝𝑐 ; adding visited nodes to the frontier. If

at each step of the walk no new nodes could be visited, a new node

is picked as the starting node. RJ is a similar method that randomly

jumps to a new node during the walk, with the same probability 𝑝𝑐 .

PinSAGE Sampling (PS) [49]. When training PinSAGE [49],

“board” sampling is proposed for training using a smaller graph.

In this case, the graph is a bipartite graph between boards and

pins, and when a board is sampled, itself and all its pins are added

to the sample until some criteria is met. We adapt this sampling

Algorithm 1 General sampling architecture

input: G𝑐𝑔, G𝑘𝑔, 𝛼, Sampler
output: G′𝑐𝑔, G′𝑘𝑔 , where | R𝑐𝑔 | · 𝛼 ≈ |R

′
𝑐𝑔 | ∧ |R𝑘𝑔 | · 𝛼 ≈ |R′𝑘𝑔 |

G′𝑐𝑔 ← Sampler(G𝑐𝑔, {}, 𝛼)
G′
𝑘𝑔
← Sampler(G𝑘𝑔,V𝑘𝑔 ∩ V′𝑐𝑔)

Algorithm 2 Forest Fire algorithm

Require: SampleNeighbors: samples neighbors of a node given probabilities and

NodeSubgraph: constructs a subgraph containing only input nodes and the edges

of the resulting graph.

1: function ForestFire(G,V𝑖𝑛, 𝛼, 𝑝𝑓 , 𝑝𝑏)

2: 𝑒 ← |G| · 𝛼 ⊲ Number of edges to sample

3: ⊲ Initialize burning, frontier, and #samples

4: 𝐵 ← {}, 𝐹 ← {}, 𝑠 ← 0

5: 𝑤 ← Random start node from (𝐹 if 𝐹 ≠ ∅ else V)
6: while 𝑠 ≤ 𝑒 ∧ 𝑠 ≤ |G| do
7: 𝑁 ← SampleNeighbors(G, 𝑤, 𝑝𝑓 , 𝑝𝑏)

8: 𝐵 ← 𝐵 ∪ 𝑁 ∪ {𝑤}
9: 𝐹 ← 𝐹 ∪ {𝑤}
10: if V𝑖𝑛 \ 𝐹 = ∅ then
11: 𝑆 ← V\ 𝐹 if 𝐵 \ 𝐹 = ∅ else 𝐵 \ 𝐹
12: 𝑤 ← Random node from 𝑆

13: else
14: 𝑤 ← Random node from (V𝑖𝑛 ∪ 𝐵) \ 𝐹
15: 𝑠 ← |NodeSubgraph(G, 𝐵) |
16: return NodeSubgraph(G, 𝐵)

method by simply sampling users and their interactions for the CG.

However, this only works for bipartite graphs, and adapting it to

the KG is non-trivial. We use RW for KG sampling since a taxonomy

path describes meaningful connections. Further development for

heterogeneous graphs remains an open research question.

Temporal Sampling (TS). As each rating is associated with a

time 𝑡 , we can sample the users and items that have been active

most recently. Meaning, given a CG, we sample the user 𝑢 and item

𝑖 , s.t. the rating time is newer than that of any other user 𝑢′ and
item 𝑖′ rating, as F𝑡 (𝑢, 𝑖) ≥ F𝑡 (𝑢′, 𝑖′). Then, given that the KG does

not have any timestamps, we use RW for that portion of the graph.

Time Complexity. The complexity of FF is 𝑂 (|V| + |R |) when
sampling all edges as the algorithm when starting at the root in

a tree structured graph, as the algorithm is equivalent to breath

first search. For RW and RJ, the worst case would be a graph of

disconnected nodes containing only self loops,𝑂 (|V|𝑙𝑤), where 𝑙 is
the walk length and𝑤 is the number of walks performed per node.

PS goes through all users and their interactions, the complexity is

thus 𝑂 (|U| + |R |). Finally, for TS, the complexity is 𝑂 (|R |) as the
method in the worst case need to visit each edge.

4.2 Inductive recommenders
The best-performing methods for recommendation in this setting

are all based on GNNs and perform graph convolutions. A GNN can

be described using an aggregation function and an update function,

the former computing a neighborhood representation of nodes and

the latter updating the node [15]. For example, the neighborhood

aggregation can be the mean of its neighborhood, followed by a

non-linear layer as an update function [15]:

e(𝑙)N𝑣
=

1

|N𝑣 |
∑︂

(𝑣′,𝑣) ∈N𝑣

e(𝑙−1)
𝑣′ , e(𝑙)𝑣 = 𝜎

(︂
W

[︂
e(𝑙−1)𝑣 ∥e(𝑙)N𝑣

]︂)︂
, (1)

Table 2: Dataset properties: I: items; U: users; R: ratings; TR: ratings in test set; STime: is the skewness of the rating times using
the Fisher-Pearson coefficient; and DCG/DKG are the densities for the Collaborative Graph and Knowledge Graph, respectively.

#I #U #R DCG #TR STime
MovieLens 4,645 14,206 1,889,382 2.86E-02 499,040 0.26

Amazon Book 24,841 70,679 843,228 4.80E-04 322,048 -0.90

Yelp 77,319 174,840 2,428,509 1.80E-04 809,989 -0.50

#Entities #Relations #Relationships DKG
14,062 8 100,719 2.88E-04

88,572 39 2,555,995 1.99E-04

75,199 12 1,643,792 7.07E-05

where 𝑙 ∈ [1, . . . , 𝐿] is the current layer, N𝑣 is the neighborhood of

𝑣 ∈ V, e(𝑙)𝑣 ∈ R𝑑
is the embedding at layer 𝑙 , 𝜎 is some activation

function, W ∈ R𝑑′×𝑑
is a linear layer, and [.∥.] is concatenation.

The initial embeddings of e(0)𝑣 can thus be represented either by

using a learned embedding or by extracting features. We refer

to the initial embedding of all vertices as X ∈ R |V|×𝑑
0

. A GNN

captures information from distant nodes through multiple graph

convolutions. Each convolution acts like a bounded BFS, so graph

size directly impacts training time.

Pin SAmpling and aggreGatE (PinSAGE [15]). PinSAGE’s
node embeddings are created, based on the GraphSAGE architec-

ture, using the feature function X, allowing the method to perform

inductive recommendation. PinSAGE was used to recommend pins

to boards, i.e., user collections of similar items. Thus, the method

only uses an item graph G𝑖 , where edges represent the co-pinning
(co-interactions) of the items, thus not representing the users. For

example in Figure 1, “The Prestige” and “Don Jon” would be con-

nected as Aiden likes both of them. Hence, PinSAGE optimizes

towards item similarity as:∑︂
(𝑖,𝑖′) ∈G𝑖

E𝑖′′∼𝑃𝑟 (𝑖)max(0, e𝑖e𝑖′′ − e𝑖e𝑖′ + Δ), (2)

where Pr(𝑖) is a probability of selecting a negative item given 𝑖 .

Gated Inductive Recommender (GInRec [21]). GInRec pro-
poses using KG information in addition to user interactions. The

method uses relation-specific gates to capture the relational infor-

mation. GInRec further applies an auto-encoder architecture over

all input features given by X to reduce their dimensionality. In

contrast to PinSAGE, users are represented in the graph using the

CKG and initialized using a zero-vector, assuming graph convolu-

tions are sufficient for user representations. The method can thus

utilize Bayesian Personalized Ranking (BPR) loss for ranking [37],

trying to rank positive items higher than negative items, which is

optimized in conjunction with the auto-encoder loss.

Inductive Module for collaborative filtering (INMO [46]).
INMO uses a key-query architecture, selecting a subset of nodes as

keys, learning their representations and how to infer representa-

tions for non-key elements. Hence, it defines a subsetU𝑘⊆U′ and
I𝑘⊆I′, that can be used to represent all users and items as:

e(0)𝑢 =
1

(|I𝑢 ∩ I′ | + 1)𝛼
∑︂

𝑖∈I𝑢∩I𝑘

e(−1)
𝑖
+ e𝑢𝑠𝑒𝑟 , (3)

e(0)
𝑖

=
1

(|U𝑖 ∩U′ | + 1)𝛼
∑︂

𝑢∈U𝑖∩U𝑘

e(−1)𝑢 + e𝑖𝑡𝑒𝑚, (4)

where e(−1)
𝑖
∈ R𝑑−1

are the learned embeddings, 𝑒𝑢𝑠𝑒𝑟 is a learned

template embedding and I𝑢 = {𝑖 | (𝑖, 𝑢) ∈ N𝑢 }. For item queries,

the same equations are used, although they are inverted. Since

all vertices in the CG are represented as the average embedding,

the individuality of the learned embeddings is lost. Therefore, in

tandem with the BPR loss, INMO proposes a self-enhancing loss:∑︂
𝑢∈U′

∑︂
𝑖∈I𝑢∩I′

∑︂
𝑖′∈I′\I𝑢

𝑙𝑛 𝜎

(︂
e(−1)⊤𝑢 W𝑠e

(−1)
𝑖
− e(−1)⊤𝑢 W𝑠e

(−1)
𝑖′

)︂
(5)

While user e(0)𝑢 and item e(0)
𝑖

embeddings can be used by any sub-

sequent recommender, INMO adopted LightGCN [18].

5 EXPERIMENTS
As in PinSAGE [49], we aim at reducing the amount of resources

needed and the computation cost of training by using a subsampled

graph, while inference is still performed on the full graph. Extended

results can be found in [22]. We answer the following questions:

RQ1) How do sampling methods affect the ability of RSs to learn

reliable models? RQ2) How does sample size affect the models’

performance? RQ3) What is the correlation between training time

and performance when sampling? RQ4) How do different RSs

models handle subsampling?

Datasets. We evaluate the methods on three real-world datasets

(See Table 2): (i) a dataset with ratings on movies, MovieLens-20m

(ML-20m) [16] extended with the MindReader KG [3]; (ii) one with

reviews of books, Amazon-Book (2014) (AB) [33] for which a KG

was constructed when testing the transductive method KGAT [44];

and (iii) a dataset with reviews of businesses, Yelp Dataset (YD) [48],

for which we extracted a KG [9]. For each dataset, we only use

ratings for items connected to the respective KGs, removing all

other items and the respective ratings. We further remove users and

items with less than 5 ratings as well as users with ratings spanning

less than 5 days. The datasets are split with ratios 0.8:0.1:0.1 for

train, validation, and testing, respectively; ensuring that all ratings

of the train set occur before the validation set, and validation before

test. This ensures trends occur naturally over time and that all

methods are tested on new data. The sampling is performed on the

training partition, as we are interested in reducing the training time.

We sample a few ratings for each user for validation and testing,

simulating new users being greeted with an initial page where they

provide initial ratings, similarly to [21, 25].

Analyzing the datasets (Table 2), we notice that the ratings are

unevenly distributed over time. We report their skewness in the

STime column. Positive values mean most ratings occur early, with

less activity later; negative values indicate the inverse. We observe

that most of the ratings for AB occur late, while most occur early for

ML-20m. Such distributions naturally affect the subsequent results,

where AB and YD probably adhere to normal business growth. How-

ever, the YD was affected by COVID, as seen in Figure 2, tracking

the number of ratings given to an item per month, with a moving

window of 12 months. Making the dataset non-trivial for RSs.

'06 '08 '10 '12 '14 '16 '18 '20 '22
Time

10

20

30

40

N
um

be
r

of
 r

at
in

gs

Yelp

Figure 2: #Ratings on items.

FF FFB
Sampling method

0.4

0.5

0.6

0.7

0.8

0.9

D
-s

ta
ti

st
ic

ML-1M CG Item CG User KG Entity KG Item

FF FFB PS RJ RW TS
Sampling method

0.0

0.2

0.4

0.6

0.8

1.0

D
-s

ta
ti

st
ic

ML-1M

FF FFB PS RJ RW TS
Sampling method

0.0

0.2

0.4

0.6

0.8

1.0

D
-s

ta
ti

st
ic

AB

FF FFB PS RJ RW TS
Sampling method

0.0

0.2

0.4

0.6

0.8

1.0

D
-s

ta
ti

st
ic

YD

Figure 3: Kolmogorov-Smirnov D-statistic of degree distribution per node type.

0.1 0.2 0.3 0.4 0.5
Ratio

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

AB - CG User/vertex ratioFF FFB PS RJ RW TS Train graph

0.1 0.2 0.3 0.4 0.5
Ratio

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

YD - CG User/vertex ratio

0.1 0.2 0.3 0.4 0.5
Ratio

1.50

1.25

1.00

0.75

0.50

Va
lu

e

YD STime

Figure 4: Illustration of user ratio and rating skew in the YD.

0.1 0.2 0.3 0.4 0.5
Ratio

80%

60%

40%

20%

0%

Re
la

ti
ve

 v
ar

ia
ti

on

AB
Sampling method FFB PS TS Metric NDCG Cov Time

0.1 0.2 0.3 0.4 0.5
Ratio

80%

60%

40%

20%

0%

Re
la

ti
ve

 v
ar

ia
ti

on

AB
Sampling method FFB PS TS Metric NDCG Cov Time

0.1 0.2 0.3 0.4 0.5
Ratio

80%

60%

40%

20%

0%

Re
la

ti
ve

 v
ar

ia
ti

on

AB

0.1 0.2 0.3 0.4 0.5
Ratio

100%

80%

60%

40%

20%

0%

Re
la

ti
ve

 v
ar

ia
ti

on

YD

Figure 5: INMO’s relative performance.

Table 3: Sampling resource usage with sampling ratio 𝑟 = 0.5.
The sampling time (Time) for CG/KG is in seconds, peak
memory (Mem) in GB, and MTT is the floored average
method train time. TC is time complexity with 𝑙 and𝑤 being
walk length and number of walks, respectively.

ML AB YD
TCTime Mem Time Mem Time MemCG KG CG KG CG KG

FF <1s 5s 0.9GB 46s <1s 1.2GB 192s 80s 1.5GB |V| + |R |
FFB 17s 15s 0.9GB 290s 504s 1.2GB 1,272s 1,108s 1.5GB |V| + |R |
PS 2s - 1.2GB 12s - 1.2GB 66s - 1.5GB |U | + |R |
RJ 8s 10s 0.9GB 96s 194s 1.3GB 442s 298s 1.6GB |V|𝑙𝑤
RW 8s 11s 0.8GB 58s 100s 1.2GB 152s 109s 1.5GB |V|𝑙𝑤
TS 4s - 0.9GB 22s - 1.3GB 74s - 1.4GB | R |
MTT 3,860s - - 15,670s - - 77,728s - -

Parameters. For the samplers, we study different ratios 𝛼∈{0.05, 0.1,
0.2, 0.5, 1}, going from an extreme sub-sampling setting to the full

graph. Due to space constraints, full details for 0.05 and 0.1 are re-

ported in the extended version on the online repository, while their

implications are still discussed below. As in related works [26, 27],

we set the forward probability at 𝑝 𝑓 = 0.35, the backward probabil-

ity at 𝑝𝑏 = 0.2, the jump/restart probability at 𝑝𝑐 = 0.15, and set the

walk length at 10. We have implemented all methods in PyTorch,

testing each method’s implementation until we achieved a similar

performance on the original datasets reported. For parameter tun-

ing, we apply Asynchronous Successive Halving (ASHA) [28], a

method based on multi-armed bandit methodology of high initial

exploration of parameter combinations, before focusing on fewer

combinations. Methods are tuned on the full graphs, using the

same hyperparameters in all sampling settings. We tried tuning on

𝛼 ∈ {0.2, 0.5} using PS getting similar performance as tuning on

the full graph on these ratios. PS has been used in the industry, we

thus want to validate its performance in other settings [49]. All con-

figurations are available on the online repository with additional

experimental results in [22]. We use an NVIDIA A10 GPU, dual

processor setup with Intel Xeon Gold 6326, and 256 GB RAM.

Features. For feature extraction, we utilize the average textual em-

beddings of Sentence-BERT [35] for all items, with the texts being

the first paragraph of the Wikipedia page, when available, other-

wise Wikidata, for ML-20m and AB, and review text for YD. Fur-

thermore, we compute the node degrees normalized by centering

around zero and scaling to unit variance. The scaling is calculated

for the train features and applied to the validation and test fea-

tures. However, the descriptions of entities can be non-descriptive

(see https://www.wikidata.org/wiki/Q20656232). We, therefore, use

TransR [29] to generate embeddings for all descriptive entities.

Evaluation metrics. We rank all items in the test set, as ranking a

subset has been shown to skew the results [36]. We exclude items

already interacted with since multiple ratings between the same

user and item cannot occur [44]. We use four standard ranking

measures: NDCG@k, recall@k, precision@k, and PR-AUC, and

one serendipity measure, coverage@k [1]; reporting the average

performance over all users. A high coverage is not indicative of the

recommendation performance, as a RS giving random recommenda-

tions would have high coverage but low ranking ability; therefore,

it cannot be looked at in isolation. However, for brevity, we only
report HR and NDCG in the comparison table Table 4, as the other

results confirm the same findings we report here.

https://www.wikidata.org/wiki/Q20656232

Sampling viability. We report the sampling time and maximal mem-

ory usage during a run (implemented in Python without any par-

allelization) for sampling ratio 0.5 in Table 3. We note that it is

possible to greatly optimize the sampling process for even faster

running times. Yet, we see that their running time is already orders

of magnitude shorter than the respective training time, confirming

the possible gain in runtime reduction when adopting sampling.

We see that FFB is often the method with the longest running

time. That is because its sampling strategy selects only few nodes

at every iteration, i.e., each step burns only one or two neighbors,

meaning a higher number of iterations compared to a sampler

constructing a densely connected neighborhood. To select more

nodes we tried increasing the sampling probabilities s.t. the bino-

mial mean would be around 10. With higher sampling likelihood,

the sampling speed reduces to that of RJ. Furthermore, we see that

the KG sampling of FF is also considerably faster than that of other

methods for the AB dataset. This is due to presence of nodes with

high degree. We analyzed the degree distribution and found a great

skew in the degrees, as the 99.99𝑡ℎ percentile has around 2𝑘 edges,

while the 99.999𝑡ℎ percentile has 100𝑘 edges in the AB KG. We

note sampling large portions of edges of few hubs is not desirable

leading to poor distribution similarities as seen for AB in Figure 3.

We use the Kolmogorov-Smirnov D-statistic over the cumulative
distribution function of the in- and out-degrees for comparing the

shapes of the distributions to evaluate the sampling methods ability

to maintain representative structural properties of the original

graph [26]. Lower values indicate a greater alignment between the

sampled graph and the original graph. We sample for each sampling

method and ratio combination five times, plotting the D-statistics

for each node-type in Figure 3. Due to the heterogeneous nature of

the KG, the non-uniform degree distributions, and the restriction

to consider already samples entities, the sampling methods have

more difficulty in approximating the structural properties of the

KG. Nonetheless, it would not make sense to relax the restriction on

the seeding of the sample for the KG, since information detached

from the items would be irrelevant for item recommendation.

Current sampling methods treat edges and nodes as homoge-

neous. They ignore node types, likely causing distribution misalign-

ment across types. Future work should develop methods tailored

to bipartite CGs and heterogeneous graphs like KGs.

RQ1 & RQ2. The summary of the result in terms of NDCG and AUC

compared to the reduction in training time is reported in Table 4.

We observe similar trends also for the other metrics not reported

here. Choice of the best sampler depends on the dataset, ratio,
and RS used. Interestingly, while PS is able to better capture the

CG’s degree distribution (Figure 3), TS is the best performing of the

two in most cases. Further, we notice that both PS and TS perform
well in many settings, often being best or second best performing.

For example, for the AB dataset, TS and PS are the best performing

for all recommender methods for most sampling ratios. Yet, we see

a trend where TS becomes the best performing for all datasets and

methods when 𝛼 ≤ 0.1. This indicates that for small datasets data
recency is important compared to capturing correct distributions

and that it is very important in sparse situations for CF.

As it would be expected, in most cases, reducing the amount of

training data reduces the prediction quality of the models. This is

most clearly seen on the YD, where all methods have trouble gener-

alizing properly without the full datasets, regardless of the sampling

method. When sampling 50% of the graph, the final prediction qual-

ities across the sampling methods present only limited differences.

For high ratios the sampling method is less important as suf-
ficient users, items and ratings have been sampled regardless of

sampling methodology. Yet, as previously stated, this is not true at

lower ratios. This raises the question on the data-efficiency of these

methods, i.e., whether these recommendation systems are actually

able to infer inductive bias from complex graph structures or are

just aggregators of collaborative signal (discussed in RQ4). When

sampling 5% to 10%, none of the methods can recommend
well compared to their baseline performance on the whole
graph. The only exception is for the dense and popularity biased

ML-20m dataset. However, all methods perform better than a naïve

TopPop recommender [10] with only 5% of the data, except GInRec

on YD. Only INMO is capable of decent recommendations when us-

ing 20% on the AB dataset and maintains performance with 50% of

the data for the YD. We find neither node-type distribution nor
rating time similarity correlate with ranking performance, as
illustrated in Figure 4. For example, for YDwith 𝑟 = 0.1, we find that

PS performs better than RW in all cases; however, RW’s user ratio is

far closer to the train graphs ratio than PS’s. For rating distribution,

there is little difference between TS and PS performance. Yet, PS

almost perfectly matches the base graphs’ rating skew while TS is

far off. There appears to exist a slight correlation between the
degree distribution CG and the performance of the sampler
exists, as PS and TS are frequently best performing and have the

lowest d-statistics. However, the absolute value is not indicative of

performance and cannot be compared across datasets.

RQ3. Generally, reducing the amount of training data significantly

reduces the training time. Yet, when using 50% of the data, Pin-

SAGE’s training time does not decrease at the same rate of other

methods. This is likely due to the item-item loss function. For Pin-
SAGE and GInRec we see that longer running times often
correspond to better ranking performance. These methods

jointly learn input feature representations, aggregation functions,

and ranking composition. Therefore, learning to represent and ag-

gregate node features may require more computation and data to

learn inductive biases. In contrast, INMO only optimizes initial

node embeddings for the ranking objective. The reduced training

time is particularly important for INMO, which does not use node

sampling, having exponential training time w.r.t. the number of

edges (see Figure 5). INMO has a time complexity of 𝑂 (𝐿 |R |𝑑) for
propagation. This is required for each edge in the train graph, lead-

ing to an epoch complexity of 𝑂 (𝐿 |R |2𝑑), where 𝐿 is the number

of layers and 𝑑 the dimensionality.

On YD, we observe a 4% decrease in performance and 86% de-

crease in training time. Although it seems like a substantial decline,

a 4% decrease may effectively be negligible in practice. As
the HR for INMO is 0.17 and decreases to 0.163 when 𝑟=0.5, this

means that in a ranked list of 20 items, the method would show at

least one relevant item in both settings (on average). Even when

INMO’s HR performance is reduced by 30% for 𝑟=0.05, it still recom-

mends at least one relevant item in the top 20, with a HR of 0.119.

Furthermore, the sampling maintains the ordering of methods in

Table 4: Results of methods at different sampling ratios and with different methods. All results are measures at 𝑘 = 20, except
AUC which evaluates the complete list, with running time in hours. Bold indicates the best performing within a group.

GInRec
ML-1M AB YD

HR NDCG Time HR NDCG Time HR NDCG Time
- - 0.734 0.202 0.9 0.132 0.029 2.7 0.122 0.021 7.9

0.20

FF -5.1% -10.3% -75.5% -34.2% -33.9% -82.6% -62.5% -68.0% -84.3%
FFB -9.5% -12.6% -78.0% -31.0% -30.1% -79.5% -58.2% -64.0% -61.6%

PS -6.9% -8.7% -68.4% -38.8% -29.3% -89.1% -61.5% -68.9% -82.5%

RJ -10.0% -15.7% -83.3% -35.8% -37.6% -81.6% -64.5% -70.8% -73.0%

RW -12.3% -16.4% -81.1% -35.6% -27.5% -89.9% -60.3% -66.6% -82.1%

TS -4.1% -6.6% -69.7% -17.1% -2.9% -85.0% -48.5% -55.0% -58.5%

*NS -42.8% -71.7% - -68.6% -69.4% - -92.2% -94.2% -

0.50

FF -7.7% -10.5% -60.2% -28.4% -29.5% -77.8% -46.5% -52.6% -67.9%

FFB -6.7% -8.9% -72.5% -29.1% -29.1% -82.5% -47.3% -53.1% -63.7%

PS -5.2% -4.9% -50.8% -30.5% -30.7% -66.5% -49.9% -57.7% -73.9%
RJ -5.1% -5.9% -17.4% -26.4% -26.1% -63.1% -42.3% -50.2% -48.5%

RW -8.5% -16.6% -55.4% -19.6% -15.7% -61.2% -47.9% -55.4% -66.9%

TS -5.3% -6.1% -55.1% -27.1% -25.6% -80.7% -42.9% -50.6% -57.3%

*NS -18.0% -42.0% - -48.8% -47.5% - -78.3% -84.3% -

INMO
ML-1M AB YD

HR NDCG Time HR NDCG Time HR NDCG Time
0.663 0.185 1.2 0.154 0.038 7.3 0.171 0.033 45.5
-5.8% -12.9% -87.0% -13.3% -19.3% -75.5% -20.5% -26.5% -90.0%

-3.6% -6.6% -85.2% -9.1% -11.3% -74.5% -18.8% -24.5% -94.2%
-1.4% -1.1% -84.5% -6.9% -9.4% -78.4% -15.5% -20.2% -88.3%

-3.7% -8.6% -86.8% -6.2% -6.3% -73.2% -22.2% -27.3% -92.6%

-3.6% -7.1% -84.7% -3.8% -5.3% -75.9% -18.3% -24.4% -90.7%

-7.0% -7.6% -86.0% -14.2% -16.8% -75.1% -15.5% -19.5% -93.2%

-3.8% -7.0% - -39.2% -43.1% - -24.3% -31.5% -

-0.4% -3.0% -67.0% -1.8% -0.6% -69.7% -6.6% -10.0% -89.5%

-0.4% -0.4% -70.9% -2.1% -1.0% -73.3% -4.4% -6.0% -86.2%

-0.8% -0.4% -70.8% -5.6% -6.5% -75.1% -4.6% -6.3% -87.5%

-0.6% -2.0% -65.8% -0.4% 1.2% -80.1% -5.2% -7.1% -85.4%

-1.5% -3.2% -63.6% -3.7% -0.8% -64.7% -4.6% -5.8% -85.1%

-5.1% -5.6% -73.7% -10.4% -10.6% -78.7% -5.8% -7.2% -89.8%
-1.8% -4.0% - -19.1% -20.1% - -8.5% -11.9% -

PinSAGE
ML-1M AB YD

HR NDCG Time HR NDCG Time HR NDCG Time
0.583 0.152 1.1 0.122 0.027 3.0 0.136 0.024 11.3
-1.5% -15.3% -87.7% -26.6% -33.7% -85.3% -41.7% -50.7% -89.4%

11.3% -0.0% -59.4% -27.3% -29.4% -83.6% -30.2% -34.5% -64.7%

-3.9% -3.4% -51.7% -25.5% -31.6% -87.3% -35.5% -42.3% -81.6%

-4.9% -4.0% -74.0% -17.8% -26.5% -82.0% -41.1% -47.2% -89.6%
8.2% -0.6% -79.1% -45.5% -56.7% -92.5% -34.6% -41.9% -69.8%

6.7% -0.9% -59.3% -15.5% -21.0% -86.1% -20.5% -25.3% -73.0%

1.8% -32.7% - -46.0% -44.6% - -82.1% -86.5% -

-3.3% -3.2% -55.0% -20.7% -30.7% -74.0% -18.3% -21.8% -41.3%

9.2% 6.1% 2.9% -18.4% -19.7% -55.6% -14.8% -17.3% -6.1%

13.2% 6.4% -14.3% -10.2% -13.8% -4.0% -16.6% -19.3% -16.3%

4.8% 2.0% -26.1% -9.1% -14.0% -49.4% -15.5% -18.6% -18.5%

-0.1% 0.4% -6.4% -12.5% -15.9% -50.9% -16.7% -20.4% -21.2%

7.5% 2.8% -34.7% -8.3% -11.2% -65.8% -19.1% -23.8% -70.1%
-21.0% -50.5% - -41.6% -46.0% - -70.1% -75.1% -

* Defined in RQ4.

Table 5: Summary of recommendations and insights for RQ1–RQ4

RQ1: Samplers RQ2: Sampling ratio RQ3: Training time RQ4: Recommenders

TS/PS perform best in most

settings.

For ratios ≤0.10 use TS.
Samplers matching the degree

distribution perform better.

𝑟=0.5 maintains recommendation per-

formance with great time savings.

𝑟≤0.10 does not maintain performance

on datasets with less than 2.5mil ratings

unless popularity biased.

80% time reduction at 𝑟 = 0.5 for GNN-based

recommender without neighborhood sampling.

Attention requires longer time for apt perfor-

mance.

Subsampling ≥0.20 for hyperparameter tuning is

possible.

Learned features are superior in most settings.

When side information or KG features are key

to performance, ensure enough data is retained

to cover relevant entities.

Methods learning collaborative bias are less

dependent on the samplers.

almost all cases. Thus, it is generally possible to compare mod-
els on the sample to infer their relative performance on the full

graph [12, 32]. In almost all cases, the methods performance with

𝑟 ∈ {0.05, 0.10} was better than a naïve TopPop [10] recommender,

only GInRec performing worse on YD. INMO obtained up to 5x
the performance for NDCG on 0.05 compared to TopPop.

Finally, we find RSs give less diverse recommendations when
trained with less data. In Figure 5, we highlight how INMO’s

coverage increases as more data is given to the method (similar

trends are exhibited by the other baselines). More training data

allow the method methods’ to make diverse recommendations A

small subset of items may be sufficient for the ML-20m dataset,

but has high impact on the performance for other datasets. Future

research should ensure RSs are capable of providing diverse
recommendations even when little data is available.

RQ4. INMO seems to be the most robust method to downsampling.

Interestingly, while GInRec uses external knowledge, this seems to

reduce the effectiveness of the method when there is little informa-

tion available. The current methods cannot effectively exploit
the KGs’ signal. Interestingly, PinSAGE performs best on ML-20m,

likely due to ML-20m being popularity biased and as the textual

attributes of movies are of far higher quality than what is available

for both AB and YD. However, all methods struggle on the YD. The

dataset is likely more difficult compared to others as a dramatic

change in most popular items occurs due to COVID, as seen in

Figure 2. To investigate whether methods prioritize collaborative

signal or structural information, we design a NichéSampler (NS)

sampling items with the fewest user ratings. For methods that learn

inductive bias, the features present in the graph used for training

dictates which inductive biases are learned by the model. Thus, with

a training graph with only niche items, if the methods maintains

the same predictive performance, it is because they rely only on

collaborative signal, disregarding learned rules. Looking at Table 4,

we observe that all methods show a performance drop under NS,

but GInRec and PinSAGE see a larger drop in performance. There-

fore, all methods learn some form of inductive bias. Yet, INMO

likely relies more on the collaborative signal, which is expected as it

does not have any attention mechanisms on edges. This means that

collaborative filtering can be learned from small samples,
while more robust inductive biases from graph structures requires

different sampling techniques and learning architectures. TS and PS

perform well at lower ratios, suggesting they capture meaningful

signals. Thus, leveraging time and representative user selection

offers a promising path for improved sampling.

6 CONCLUSION AND FUTUREWORK
We investigate the practical implications of employing subsampled

training data with different graph-based sampling methodologies

when training inductive RSs. Inductive techniques are able to pro-

vide predictions for out-of-samples data and past evaluations have

exploited this ability to reduce training time. Our evaluation shows

that the PinSAGE and Temporal sampling approach produces the

most reliable samples. Yet, for all RSs, at least 50% of the training

graph is required to maintain prediction accuracy except for popu-

larity biased datasets where ≤ 10% is sufficient. Nonetheless, the

most robust method, INMO, showcases an important reduction in

training time, with a decrease of over 80%, already with 50% of

the graph. Future research could design sampling methods for and

increase the robustness of inductive recommendation methods.

ACKNOWLEDGMENTS
This research was partially funded by the Danish Council for In-

dependent Research (DFF) under grant agreement no. DFF-8048-

00051B and the Poul Due Jensen Fond (Grundfos Foundation).

REFERENCES
[1] Gediminas Adomavicius and YoungOk Kwon. 2012. Improving Aggregate Rec-

ommendation Diversity Using Ranking-Based Techniques. TKDE’12 (2012),

896–911.

[2] Russa Biswas, Lucie-Aimée Kaffee, Michael Cochez, Stefania Dumbrava, Theis E.

Jendal, Matteo Lissandrini, Vanessa López, Eneldo Loza Mencía, Heiko Paul-

heim, Harald Sack, Edlira Vakaj, and Gerard de Melo. 2023. Knowledge Graph

Embeddings: Open Challenges and Opportunities. TGDK 1, 1 (2023), 4:1–4:32.

[3] Anders H. Brams, Anders L. Jakobsen, Theis E. Jendal, Matteo Lissandrini, Peter

Dolog, and Katja Hose. 2020. MindReader: Recommendation over Knowledge

Graph Entities with Explicit User Ratings. InCIKM’20. Association for Computing

Machinery, 2975–2982.

[4] Desheng Cai, Shengsheng Qian, Quan Fang, Jun Hu, and Changsheng Xu. 2023.

User Cold-Start Recommendation via Inductive Heterogeneous Neural Network.

TOIS’23 (2023).
[5] Emrah Çem, Mehmet Engin Tozal, and Kamil Saraç. 2013. Impact of sampling

design in estimation of graph characteristics. In IPCCC’13. 1–10.
[6] Hao Chen, Zefan Wang, Feiran Huang, Xiao Huang, Yue Xu, Yishi Lin, Peng He,

and Zhoujun Li. 2022. Generative Adversarial Framework for Cold-Start Item

Recommendation. In SIGIR’22.
[7] Xiaohui Chen, Jiankai Sun, Taiqing Wang, Ruocheng Guo, Li-Ping Liu, and

Aonan Zhang. 2023. Graph-Based Model-Agnostic Data Subsampling for Rec-

ommendation Systems. In KDD’23. 3865–3876.
[8] Sundeep Prabhakar Chepuri and Geert Leus. 2017. Graph Sampling for Covari-

ance Estimation. TSIPN’17 (2017), 451–466.

[9] Mads Corfixen, Magnus Olesen, Thomas Heede, and Christian Filip Pinderup

Nielsen. 2023. The Yelp Collaborative Knowledge Graph. https://doi.org/10.

5281/zenodo.8049832

[10] Paolo Cremonesi, Yehuda Koren, and Roberto Turrin. 2010. Performance of

recommender algorithms on top-n recommendation tasks. In RecSys’10. 39–46.
[11] Edoardo D’Amico, Khalil Muhammad, Elias Z. Tragos, Barry Smyth, Neil Hurley,

and Aonghus Lawlor. 2023. Item Graph Convolution Collaborative Filtering for

Inductive Recommendations. In ECIR’23.
[12] Noemí DeCastro-García, Ángel Luis Muñoz Castañeda, David Escudero Gar-

cía, and Miguel V. Carriegos. 2019. Effect of the Sampling of a Dataset in

the Hyperparameter Optimization Phase over the Efficiency of a Machine

Learning Algorithm. Complex. 2019 (2019), 6278908:1–6278908:16. https:

//doi.org/10.1155/2019/6278908

[13] Yuntao Du, Xinjun Zhu, Lu Chen, Ziquan Fang, and Yunjun Gao. 2023. MetaKG:

Meta-Learning on Knowledge Graph for Cold-Start Recommendation. TKDE’23
(2023).

[14] Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-Agnostic Meta-

Learning for Fast Adaptation of Deep Networks. In ICML’17.
[15] William L Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive representation

learning on large graphs. In NeurIPS’17. 1025–1035.
[16] F Maxwell Harper and Joseph A Konstan. 2015. The movielens datasets: History

and context. TIIS’15 (2015), 1–19.
[17] Mohammad Hashemi, Shengbo Gong, Juntong Ni, Wenqi Fan, B. Aditya Prakash,

and Wei Jin. 2024. A Comprehensive Survey on Graph Reduction: Sparsification,

Coarsening, and Condensation. In IJCAI’24. 8058–8066.
[18] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng

Wang. 2020. Lightgcn: Simplifying and powering graph convolution network

for recommendation. In SIGIR’20. 639–648.
[19] Zengfeng Huang, Shengzhong Zhang, Chong Xi, Tang Liu, and Min Zhou. 2021.

Scaling Up Graph Neural Networks Via Graph Coarsening. In KDD’21, Feida
Zhu, Beng Chin Ooi, and Chunyan Miao (Eds.). 675–684.

[20] Bei Hui, Lizong Zhang, Xue Zhou, Xiao Wen, and Yuhui Nian. 2022. Personalized

recommendation system based on knowledge embedding and historical behavior.

Appl. Intell.’22 (2022).
[21] Theis E. Jendal, Matteo Lissandrini, Peter Dolog, and Katja Hose. 2023. GInRec:

A Gated Architecture for Inductive Recommendation using Knowledge Graphs.

In KaRS’23 (CEUR Workshop Proceedings). 80–89.
[22] Theis E. Jendal, Matteo Lissandrini, Peter Dolog, and Katja Hose. 2025. The Limits

of Graph Samplers for Training Inductive Recommender Systems: Extended

results. arXiv:2505.14241 [cs.IR]

[23] Wei Jin, Lingxiao Zhao, Shichang Zhang, Yozen Liu, Jiliang Tang, and Neil Shah.

2022. Graph Condensation for Graph Neural Networks. In The Tenth International
Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022.
OpenReview.net. https://openreview.net/forum?id=WLEx3Jo4QaB

[24] Maciej Kurant, Minas Gjoka, Yan Wang, Zack W. Almquist, Carter T. Butts,

and Athina Markopoulou. 2012. Coarse-grained topology estimation via graph

sampling. InWOSN’12. 25–30.
[25] Hoyeop Lee, Jinbae Im, Seongwon Jang, Hyunsouk Cho, and Sehee Chung. 2019.

Melu: Meta-learned user preference estimator for cold-start recommendation. In

SIGKDD’19.
[26] Jure Leskovec and Christos Faloutsos. 2006. Sampling from large graphs. In

SIGKDD’06. ACM, 631–636.

[27] Jure Leskovec, Jon M. Kleinberg, and Christos Faloutsos. 2005. Graphs over time:

densification laws, shrinking diameters and possible explanations. In SIGKDD’05.
ACM, 177–187.

[28] Liam Li, Kevin G. Jamieson, Afshin Rostamizadeh, Ekaterina Gonina, Jonathan

Ben-tzur, Moritz Hardt, Benjamin Recht, and Ameet Talwalkar. 2020. A System

for Massively Parallel Hyperparameter Tuning. In MLSys’20. mlsys.org.

[29] Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. 2015. Learning

entity and relation embeddings for knowledge graph completion. In AAAI’15.
[30] David C. Liu, Stephanie Kaye Rogers, Raymond Shiau, Dmitry Kislyuk, Kevin C.

Ma, Zhigang Zhong, Jenny Liu, and Yushi Jing. 2017. Related Pins at Pinterest:

The Evolution of a Real-World Recommender System. InWWW’17 Companion.
583–592.

[31] Xin Liu, Mingyu Yan, Lei Deng, Guoqi Li, Xiaochun Ye, and Dongrui Fan. 2022.

Sampling Methods for Efficient Training of Graph Convolutional Networks: A

Survey. IEEE CAA J. Autom. Sinica 9, 2 (2022), 205–234. https://doi.org/10.1109/

JAS.2021.1004311

[32] Matteo Montanari, Cesare Bernardis, and Paolo Cremonesi. 2022. On the impact

of data sampling on hyper-parameter optimisation of recommendation algo-

rithms. In SAC ’22: The 37th ACM/SIGAPP Symposium on Applied Computing,
Virtual Event, April 25 - 29, 2022, Jiman Hong, Miroslav Bures, JuwWon Park, and

Tomás Cerný (Eds.). ACM, 1399–1402. https://doi.org/10.1145/3477314.3507158

[33] JianmoNi, Jiacheng Li, and JulianMcAuley. 2019. Justifying Recommendations us-

ing Distantly-Labeled Reviews and Fine-Grained Aspects. In EMNLP-IJCNLP’19.
Association for Computational Linguistics, 188–197.

[34] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The
PageRank Citation Ranking: Bringing Order to theWeb. Technical Report. Stanford
InfoLab.

[35] Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence Embeddings

using Siamese BERT-Networks. In EMNLP-IJCNLP’19. 3982–3992.
[36] Steffen Rendle. 2019. Evaluation metrics for item recommendation under sam-

pling. arXiv preprint arXiv:1912.02263 (2019).
[37] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-

Thieme. 2009. BPR: Bayesian personalized ranking from implicit feedback. In

UAI’09. 452–461.
[38] Juan Manuel Rodriguez and Antonela Tommasel. 2024. Leveraging User History

with Transformers for News Clicking: The DArgk Approach. In RecSysChal-
lenge’24.

[39] Yehjin Shin, Jeongwhan Choi, HyowonWi, and Noseong Park. 2024. AnAttentive

Inductive Bias for Sequential Recommendation beyond the Self-Attention. In

AAAI’24.
[40] Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang.

2019. BERT4Rec: Sequential Recommendation with Bidirectional Encoder Rep-

resentations from Transformer. In CIKM’19.
[41] Qingyun Sun, Ziying Chen, Beining Yang, Cheng Ji, Xingcheng Fu, Sheng Zhou,

Hao Peng, Jianxin Li, and Philip S. Yu. 2024. GC-Bench: An Open and Unified

Benchmark for Graph Condensation. CoRR (2024).

[42] Nicolas Tremblay and Andreas Loukas. 2020. Approximating Spectral Clustering
via Sampling: A Review. 129–183.

[43] Shuai Wang, Kun Zhang, Le Wu, Haiping Ma, Richang Hong, and Meng Wang.

2021. Privileged Graph Distillation for Cold Start Recommendation. In SIGIR’21.
[44] Xiang Wang, Xiangnan He, Yixin Cao, Meng Liu, and Tat-Seng Chua. 2019.

Kgat: Knowledge graph attention network for recommendation. In SIGKDD’19.
950–958.

[45] Qitian Wu, Hengrui Zhang, Xiaofeng Gao, Junchi Yan, and Hongyuan Zha. 2021.

Towards Open-World Recommendation: An InductiveModel-based Collaborative

Filtering Approach. In ICML’21.
[46] YunfanWu, Qi Cao, Huawei Shen, Shuchang Tao, and Xueqi Cheng. 2022. INMO:

A Model-Agnostic and Scalable Module for Inductive Collaborative Filtering. In

SIGIR’22. 91–101.
[47] Zhenbang Xiao, Shunyu Liu, Yu Wang, Tongya Zheng, and Mingli Song. 2024.

Disentangled Condensation for Large-scale Graphs. CoRR (2024).

[48] Yelp. 2025. Yelp Open Dataset. https://www.yelp.com/dataset/. Accessed:

2025-05-20.

[49] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,

and Jure Leskovec. 2018. Graph convolutional neural networks for web-scale

recommender systems. In SIGKDD’18. 974–983.
[50] Chengkun Zhang, Hongxu Chen, Sixiao Zhang, Guandong Xu, and Junbin Gao.

2022. Geometric Inductive Matrix Completion: A Hyperbolic Approach with

Unified Message Passing. InWSDM’22.
[51] Chuxu Zhang, Huaxiu Yao, Lu Yu, Chao Huang, Dongjin Song, Haifeng Chen,

Meng Jiang, and Nitesh V Chawla. 2021. Inductive Contextual Relation Learning

for Personalization. TOIS’21 (2021).
[52] Muhan Zhang and Yixin Chen. 2019. Inductive Matrix Completion Based on

Graph Neural Networks. In ICLR’19.
[53] Xu Zhao, Yi Ren, Ying Du, Shenzheng Zhang, and Nian Wang. 2022. Improving

Item Cold-start Recommendation via Model-agnostic Conditional Variational

Autoencoder. In SIGIR’22.

https://doi.org/10.5281/zenodo.8049832
https://doi.org/10.5281/zenodo.8049832
https://doi.org/10.1155/2019/6278908
https://doi.org/10.1155/2019/6278908
https://arxiv.org/abs/2505.14241
https://openreview.net/forum?id=WLEx3Jo4QaB
https://doi.org/10.1109/JAS.2021.1004311
https://doi.org/10.1109/JAS.2021.1004311
https://doi.org/10.1145/3477314.3507158
https://www.yelp.com/dataset/

	Abstract
	1 Introduction
	2 Background & Preliminaries
	3 Related Work
	4 Methodology
	4.1 Sampling methods
	4.2 Inductive recommenders

	5 Experiments
	6 Conclusion and future work
	Acknowledgments
	References

