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ABSTRACT companies [16]. These KGs (represented in RDF) are massive, di-

Knowledge Graphs (KGs) are widely used to represent heteroge-
neous domain knowledge on the Web and within organizations.
Various methods exist to manage KGs and ensure the quality of
their data. Among these, the Shapes Constraint Language (SHACL)
and the Shapes Expression Language (ShEx) are the two state-of-
the-art languages to define validating shapes for KGs. Since the
usage of these constraint languages has recently increased, new
needs arose. One such need is to enable the efficient generation
of these shapes. Yet, since these languages are relatively new, we
witness a lack of understanding of how they are effectively em-
ployed for existing KGs. Therefore, in this work, we answer How
validating shapes are being generated and adopted? Our contribution
is threefold. First, we conducted a community survey to analyze
the needs of users (both from industry and academia) generating
validating shapes. Then, we cross-referenced our results with an
extensive survey of the existing tools and their features. Finally, we
investigated how existing automatic shape extraction approaches
work in practice on real, large KGs. Our analysis shows the need
for developing semi-automatic methods that can help users generate
shapes from large KGs.
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1 INTRODUCTION

The popularity of Knowledge Graphs (KGs) has consistently grown
in the last decade due to the advent of public KGs, such as DBpe-
dia [4], YAGO [26], and WikiData [28] and their adoption among
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verse, and most importantly incomplete due to the evolving nature
of human knowledge. Given the importance of KGs, it is paramount
to ensure the quality of the information they represent. Validating
languages, i.e., the shapes constraints languages (SHACL [13] and
ShEx [19]) are used to ensure the data quality in KGs by defining
integrity constraints in the form of shapes, i.e., high-level struc-
tural constraints for entities within a KG. While SHACL and ShEx
differ at a syntactic level, they both allow to specify a set of char-
acterizing properties and attributes for classes of entities that are
expected to be hold within a KG [21]. For instance, they both allow
to specify that all entities of type “Student” need to have “name”
and “registration number” as properties, and be linked to at least
one “Course”. Shapes also specify data types for these properties,
e.g., String, Integer, or IRL Shapes can also be used for purposes
other than validation, such as to design user interfaces [9, 29], or
optimize query processing [21].

There exist various tools to help define validating shapes, either
manually or semi-automatically, such as Astrea [6], TopBraid Com-
poser [3], the SHACLGEN [2] python library, ShapeDesigner [5] and
SheXer [8] to semi-automatically generate SHACL and ShEx from
ontologies and KGs data, as well as approaches to define shapes
using profiling [15] and ontology design patterns [18]. Naturally,
when a KG contains hundreds of classes, each having many attributes,
manually specifying (post-hoc) the necessary shapes becomes a tedious
and unmanageable task. On the other hand, the approaches helping
automatic generation of validating shapes produce a large number
of shape constraints (for nodes and properties) such that it becomes
non-trivial to verify the validity of the generated constraints.

To better understand the needs of users, both in industry and
academia, to generate shapes for large KGs, we conducted an online
community survey with a set of questions to learn how (and up
to what extent) they generate and use shapes. We used Google
Forms to create an online survey! and shared it with researcher and
practitioners across different communities, e.g., within members
of the W3C mailing list?, the Solid project®, the BlueBrainNexus*
project, the Bayer-Group COLID team®, and Slack channels® for
Knowledge Graph and ISWC conferences. Additionally, we have
contacted other related Semantic Web communities developing
various tools and approaches to deal with validating shapes. When
we asked users to participate in our survey, they all manifested
great interest in the results of this study. Hence, we promised to

Uhttps://forms.gle/93KFZH5vcGy7Et27A
Zhttps://lists.w3.org/Archives/Public/semantic-web/
Shttps://gitter.im/solid/

*https://bluebrainnexus.io

Shttps://github.com/Bayer- Group/COLID-Documentation
®https://knowledgegraphconf.slack.com, https://iswe-conf.slack.com
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re-share our findings with the community. This work is also a way
to keep up with that promise. Therefore, in the following we first
report our findings by analyzing the results obtained from our online
community survey, then we discuss the state of the art in validating
shapes. Finally, we report on some experimental results in actually
using such tools. Our analysis highlights a number of gaps when
it comes to generating shapes automatically to validate existing
(possibly noisy or erroneous) KGs, thus we discuss a number of
future research directions based on our findings.

2 COMMUNITY SURVEY

This section summarizes the questions and answers to our sur-
vey. The survey contained nine questions and received in total 30
answers. The survey was conducted online, and the results were
collected anonymously between November 2021 and January 2022.
Among the questions, we surveyed also the area of occupation of
the respondents, i.e., if they belong to Academia, Industry, or both.
Answers to this question showed that 53% of the respondents are
from Industry, 27% from Academia, and 20% from both (see Fig-
ure 2a). In the following, where relevant, we will report for each
statistics, in parenthesis, the split of answers by respondents from
academia, industry, or both respectively.

Our main question asked "how the validating shapes were being
generated" in general. We provided three answer options and al-
lowed the respondents to also add a free text answer. Answers to
this question are presented in Figure 1, where numbers in circles
represent the number of participants. The results show that most
of the respondents (i.e., 26 - split 6/14/6) generate shapes manually,
while 13 respondents (split 5/5/3) generate shapes from existing
ontologies and 7 respondents (split 1/4/2) generate shapes from
RDF graphs instance data, while only 1 respondent declared to use
“RDF forms”. The results overlap as it was a multi-choice question
where respondents had chosen more than one option.

We then asked which tools or methods the respondents used in
practice and provided a list of state-of-the-art tools and approaches
that can help in generating shapes (see Table 1) along with a free
text answer option as well. To our surprise, respondents use a very
heterogeneous set of tools and methods, with the most used being
TopBraid Composer [3] used by 33% (10) of respondents (split 1/7/2),
Protégé was used by 20% (6) respondents (split 3/3/0), RDFShape [1]
by another 16.7% (5) respondents (split 2/1/2), SheXer [8] was used
by 10% (3) respondents (split 0/1/2), and text editors are used by
16.7% (5) respondents (split 2/4/0). The rest of the tools are used by
1 or 2 respondents on average. In addition to that, one of the respon-
dents mentioned that they generate shapes by applying custom
rules via Python scripts, another by using tabular formats (like Ex-
cel) to curate shapes manually. Lastly, one respondent commented:
“I am looking for a suitable tool”.

We further asked a number of questions related to the charac-
teristics of the graphs for which the respondents were generating
shapes. Results showed that 38% of respondents generate shapes
from RDF graphs containing up to 100K triples (split 4/5/1), 17%
use graphs having 100K to 1 million triples (split 0/5/0), and 45%
use graphs containing more than 1 million triples (split 4/6/3), see
Figure 2a and 2b. The great majority 48% (14) of KGs are described
by ontologies containing between 10 and 1000 classes and 10-50
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Figure 1: Analysis on extraction of validating shapes

distinct properties (see Figure 2c and 2d). While 32% (9) of the re-
spondents generate up to 10 shapes, 47% (13) generate between
10-100 shapes, and 14% (4) generate more than 100 shapes and in
some cases even more than 1000 shapes (see Figure 2e).

In addition to that, 55% (16) of the respondents generate shapes
for the entire graph, and 43% (13) of them generate shapes for spe-
cific portions of the graph (see Figure 2f) due to various reasons
(answers to our last question). These reasons include (i) use case
specific requirements to focus on shapes targeting only the impor-
tant classes of the graph (10%), (ii) interest or requirement to get
a specific maintained view of the data graph or subset (30%), (ii)
limitation of the known business rules to apply only to part of the
graph (10%), (iv) the scalability of existing methods to generate
shapes is insufficient for very large graphs (10%), (v) the decision to
generate shapes progressively (such as for WikiData) to accommo-
date evolution through time and change in requirements (30%), and
(vi) the requirement of validating only non-logical statements that
cannot be validated using (already existing) OWL constraints (15%).

The results show that most users work with fairly large graphs
with tens or hundreds of classes and thousands or millions of triples.
Yet, most users still generate shapes manually; this way, they can
generate only a handful of shapes (not enough to cover the entire
graph). Thus, there is also the need for tools in supporting the
scalable generation of shapes for very large graphs, which should
allow to extract shapes for only a specific portion of a KG. There-
fore, we conducted an extensive analysis of tools used to generate
validating shapes and present our findings in the next section to
better understand the capabilities offered by existing approaches
when it comes to helping users generate shapes more efficiently.

3 STATE OF THE ART

Integrity constraints over KGs were initially defined using OWL[27].
Later on, the SPARQL Inferencing Notation (SPIN) [12], a SPARQL-
based rule and constraint language was introduced to enforce con-
straints over KGs using SPARQL queries. SHACL [13] is known as
the next generation of SPIN and has become a W3C recommended
language in 2017. Similar to SHACL, ShEx [20] is a constraint lan-
guage built on regular bag expressions inspired by schema lan-
guages for XML. Validating schemas have been adopted for type
and compliance checking [14, 22, 23], as well as purposes other than
validation as well. Specifically, for optimizing query processing in
KGs [21], building and automatically generating forms to populate
RDF datasets [9, 29], intelligent geoprocessing [10], and automatic
detection of metadata errors in clinical studies [11].
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Figure 2: Survey Analysis: Answers to statistical questions

Shape Extraction: There has been recent development to derive
validating shapes from existing KG instance data; various applica-
tions are created to assist the process of shapes extraction, which
can potentially be divided into two phases, i.e., preprocessing and
shapes construction. The preprocessing phase involves collecting in-
formation from the input dataset about classes and their properties,
which are then used in the shapes construction phase. The prepro-
cessing phase can be conducted in two alternative ways: query-
based and non-query-based. The query-based solutions involve
loading the KG into a triplestore able to answer SPARQL queries.
The triplestore is then used to access the information required for
the shapes construction phase. SHACLGEN [2], RDFShape [1], and
ShapeDesigner [5] are query-based solutions to generate SHACL
or ShEx shapes from existing RDF data. Non-query-based solutions,
instead, parse RDF data stored as files on disk. SheXer [8] is the only
tool to generate ShEx shapes that supports both a triplestore and
RDF files as input. Spahiu et al. [24] proposed a solution based on a
data profiling tool called ABSTAT [25] to generate semantic profiles
and transform them into SHACL to improve the quality of the KGs.
Mihindukulasooriya et al. [15] proposed a KG data profiling-based
RDF shape induction approach by using predictive modeling to
generate shapes. SHACLearner [17] is a method to learn SHACL
constraints based on Inverse Open Path rules (IOP) rules. Astrea [6]
is an ontology-based approach to extract SHACL from ontologies.
Finally, RML2SHACL [7] also generates SHACL shapes but it re-
quires RML mappings. We have classified existing approaches in
Table 1 based on their features (expanded from a previous short
survey [6]), i.e., support for shapes extraction from data or ontolo-
gies, support for automatic extraction of shapes, support for shapes
extraction from a SPARQL triplestore, and whether they extract
SHACL, ShEx, or both types of validating shapes. Overall, as we
show later, we note that shapes extracted by these methods are often
incomplete, i.e., they do not implement functionalities to generate all
types of shape constraints, e.g., they often do not produce sh:class
and cardinality constraints.

Table 1: State-of-the-art to extract validating shapes

Extracted from | Auto- | Triple-

Approach data ‘ ontology | matic | store Type

Shape Induction [15] | v X (4 v SHACL,ShEx
SheXer [8] v X v v SHACLShEx
Spahiu et al. [24] v X v v SHACL
ShapeDesigner. [5] v X 4 4 SHACL,ShEx
SHACLGEN [2] v v v v SHACL
TopBraid [3] (4 (4 v v SHACL
Pandit et al. [18] X 4 X v SHACL
Astrea [6] X v v X SHACL
SHACLearner [17] v X v X SHACL

4 LIMITATIONS AND OPPORTUNITIES

In light of the results presented above, this section highlights the
existing gaps between the capabilities of current tools and the
real user needs. After this analysis, we present a set of important
research directions for automatic shape extraction.

Among the existing approaches, some tools support extraction
of validating shapes from ontologies only (such as Astrea [6]), oth-
ers support extraction from instance data, and very few support
automatic generation of validating shapes from both ontology and
instance data (see Table 1). Methods that generate shapes from
ontologies assume the provided ontology to be complete (i.e., pro-
viding complete coverage of the instances in the KG and their
properties) and of small size (they do not expect more than a few
hundred classes). Approaches that extract shapes from RDF in-
stance data assume that the KG is particularly small (in terms of the
number of instances and classes) or already available in a triplestore.
When this is not the case, they load it into an in-memory triplestore,
which is problematic for large graphs, as further discussed below.
We believe these assumptions clash with a number of real use cases.
As a matter of fact, in the results of our survey, we see that, despite
the existence of tools and approaches to extract validating shapes
automatically, most users are still generating shapes manually. To
understand this better, we ran some experiments to find out the real
capabilities of existing tools for automatically extracting shapes from
RDF graphs. The experiments are performed using state-of-the-art
shapes extraction tools and approaches such as SheXer [8], Sha-
peDesigner [5], and SHACLGEN [2]. All experiments are performed
on a machine with 24 cores and 256GB of RAM using a 2021 dump
of DBpedia [4], YAGO-4 [26], and a version of LUBM scaled to 91M
triples. More details on our experiments and datasets are available
online”. We tried similar experiments for WikiData [28] as well,
but the initial results show that existing methods are not able to
handle its scale ( they exhausted all memory or did not manage to
produce an output in several days). Therefore, we highlight that more
research is needed to design scalable methods to extract validating
shapes from large KGs.

Our first finding from these experiments is that some tools are
capable of handling only relatively small KGs. In particular Sha-
peDesigner [5] crashed with datasets with a few millions triples,
while SHACLGEN [2] is not suited to extract shapes of datasets
having hundreds of classes as it required days to generate shapes
for YAGO-4 (8,897 classes). Furthermore, we note that both Sha-
peDesigner [5] and SHACLGEN [2] load the whole graph into a
triplestore to generate shapes. Yet, extracting shapes by querying a

7 https://relweb.cs.aau.dk/validatingshapes/
Zenodo: https://doi.org/10.5281/zenodo.5958985
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triplestore is particularly inefficient when extracting shapes for the
entire graph. Compared to parsing and analyzing a file, which can
exploit optimized batch processing over multiple scans of the data,
extracting shapes when the KG is in a triplestore requires to run
queries for each target class to extract all necessary information.
When processing RDF files directly, SheXer [8] provides better per-
formance and was able to extract shapes from DBpedia consuming
a maximum of 18GB of RAM in 26 minutes (LUBM: 33GB RAM in
58 minutes, YAGO-4: 24GB RAM in 117 minutes).

Our second finding relates to the usefulness and reliability of the
shapes extracted from the instance data. Shapes are useful only if they
are complete (containing all the required constraints to validate the
input graph) and reliable if they do not contain constraints repre-
senting spurious data. Our analysis (via manual inspection) of the
shapes extracted by these tools revealed that none of the approaches
extracts all the required constraints for property shapes; for instance,
we did not find any constraint for non-literal predicate objects
(e.g., to indicate that objects for “takes course” should be of type
“Course”). Furthermore, we saw that some property shapes were
extracted because of the presence of some nodes with spurious or
erroneous predicates (e.g., a city mistaken as a member of a musical
band). To further investigate these issues, we implemented a Java
application’ to extract also the missing shape constraints and report
their support in the graph, e.g., how many entities were satisfying
a specific constraint. We found that generating automatically the
complete set of shapes would produce hundreds or thousands of node
and property shapes each having multiple constraints. Yet, since the
source KGs are naturally noisy and incomplete, those shapes and con-
straints are often unreliable. In particular, for DBpedia, we extracted
426 node shapes and 11,916 property shapes, which have 38,454
non-literal and 5,335 literal constraints. Similarly, for YAGO-4, we
extracted 8,897 node shapes and 76,765 property shapes, with a total
of 315,413 non-literal and 50,708 literal constraints. We have pub-
lished the extracted SHACL shapes on Zenodo’. Given the above
numbers of extracted constraints for DBpedia and YAGO-4, it is
non-trivial to manually establish the validity and the usefulness of
thousands of automatically generated shape constraints. The only
existing approach in this direction is SheXer [8], which supports
filtering of shapes based on a “trustworthiness” score (even though
we found this score does not directly translate into how frequently
a shape is satisfied in a dataset, and thus it is hard to tune).

In conclusion, referring to the results of our community survey
(Figure 1), we see a connection between the limitations of existing
shapes extraction approaches in effectively supporting the real user
needs and the (for now) common practice of generating shapes
manually. Since validating shapes have become an essential tool to
ensure the quality and completeness of large KGs in many organi-
zations, these results suggest that more research is needed to help
users generate useful validating shapes for existing large KGs, consid-
ering both the scalability of the approach and the informativeness
and utility of the extracted shapes. This will help users curate and
maintain high-quality large-scale KGs.
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