
An Evaluation Methodology and Experimental Comparison

of Graph Databases

Matteo Lissandrini

University of Trento

ml@disi.unitn.eu

Martin Brugnara

University of Trento

mb@disi.unitn.eu

Yannis Velegrakis

University of Trento

velgias@disi.unitn.eu

ABSTRACT
We are witnessing an increasing interest in graph data. The
need for efficient and effective storage and querying of such
data has led the development of graph databases. Graph
databases represent a relatively new technology, and their
requirements and specifications are not yet fully understood
by everyone. As such, high heterogeneity can be observed
in the functionalities and performances of these systems. In
this work we provide a comprehensive study of the existing
systems in order to understand their capabilities and limi-
tations. Previous similar efforts have fallen short in provid-
ing a complete evaluation of graph databases, and drawing
a clear picture on how they compare to each other. We
introduce a micro-benchmarking framework for the assess-
ment of the functionalities of the existing systems and pro-
vide detailed insights on their performance. We support the
broader spectrum of test queries and conduct the evaluations
on both synthetic and real data at scales much higher than
what has been done so far. We offer a systematic evalua-
tion framework that we have materialized into an evaluation
suite. The framework is extensible, allowing the easy inclu-
sion in the evaluation of other datasets, systems or queries.

1. INTRODUCTION
Graph data [61] has become increasingly important nowa-

days since it can model a wide range of applications, includ-
ing transportation networks, knowledge graphs [44,58], and
social networks [35]. As the graph datasets are becoming
larger and larger, so does the need for their efficient and
effective management, analysis, and exploitation. This has
led to the development of graph data management systems.

There are two kinds of graph data management systems
(Figure 1). One is the graph processing systems [27, 33, 37,
45, 46, 47]. They are systems that analyze graphs with the
goal of discovering characteristic properties in their struc-
tures, e.g., average degree of connectivity, density, or modu-
larity. They also perform batch analytics at large-scale that
implement a number of computationally expensive graph al-
gorithms like PageRank [54], SVD [30], strongly connected

This work is licensed under the Creative Commons Attribution-

NonCommercial-NoDerivatives 4.0 International License. To view a copy

of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For

any use beyond those covered by this license, obtain permission by emailing

ml@disi.unitn.it

Technical Report, Department of Information Engineering and Computer

Science - DISI

University of Trento.

User-facing
Transaction
Indices
Concurrency
Availability
Schema

Business-intelligence
Processing

Batch
Algorithms

StatisticsQueries
Pathfinding
Connectivity

Views
Pipelining
Formatter

Export/Import

Graph
Databases

Graph
Processing

GraphLab
Giraph/Pregel

GraphX

Neo4j
Titan
Blazegraph
OrientDB
ArangoDB
Sparksee

Figure 1: Overview of the distinction between
Graph Databases and Graph Processing systems

component identification [59], core identification [28], and
others. Examples in this category include systems like Gi-
raph, GraphLab, Graph Engine, and GraphX [60]. The
second kind of graph management systems comprises the
so-called graph databases, or GDB for short [20]. Graph
Databases focus on storage and querying tasks where the
priority is the high-throughput interrogations of the data,
and the execution of transactional operations. Originally,
they were implemented by exploiting specialized schemas
on relational systems. As the sizes of the graphs was be-
coming larger and more complex, it became apparent that
more dedicated systems were needed. This gave rise to a
whole new wave of graph databases, that include Neo4j [11],
OrientDB [13], Sparksee [14] (formerly known as DEX), Ti-
tan [16], and the more recent, ArangoDB [6] and Blaze-
Graph [15]. The focus of this work is on this second kind of
graph management systems, i.e., the graph databases.

Given the increased popularity that graph databases are
enjoying, there is a need for comparative evaluations of their
available options. Such evaluations are critically important
for practitioners in order to better understand both the ca-
pabilities and limitations of each system, as well as the con-
ditions under which perform well, so that they can choose
the system that better fits the task at hand. A comparative
study is also important for researchers, since they can find
where they should invest their future studies. Last but not
least, it is of great value for the developers, since it gives
them an idea of how graph data management systems com-

2

pare to the competitors and what parts of their systems need
improvement. There is already a number of experimental
comparisons on graph databases [29,40,41], but they do not
provide the kind of complete and exhaustive study needed.
They test a limited number of features (i.e., queries), which
provide only a partial understanding of each system. Fur-
thermore, existing studies do not perform experiments at
large scale, but make prediction on how the systems will
perform based on tests on smaller sizes. Apart from the
fact that they tend to provide contradictory conclusions,
when we performed the experiments at larger scale, results
were highly different from those they had predicted. Finally,
many of the tests performed are either too simplistic or too
generic, to a point that it is not easy to interpret the results
and identify the exact limitations of each system.

Given the above motivations, in this work we provide a
complete and systematic evaluation of the state-of-the-art
graph database systems. Our approach is based not only
on the previous works of this kind, but also on the princi-
ples that are followed when designing benchmarks [17, 29,
39,40,41]. Based on an extensive study of the literature, we
have made an effort to cover all the scenarios that have so
far been identified. As result, we scrupulously test all the
types of insert-select-update-delete queries considered so far,
with special attention to the various use-cases, and extend
such tests to cover the whole spectrum of tasks, data-types
and scale. As an indication of the extent of our work, we
test 35 classes of operations with single queries and batch
workloads as well (for a total of about 70 different tests)
as opposed to 4-13 that existing studies have done, and we
scale our experiments up to 28M nodes/ 31M edges, as op-
posed to the 250K nodes/2.2M edges of existing works. Fi-
nally, in the design of the tests, we follow a microbenchmark
model [25]. Instead of considering elaborate situations, we
have identified primitive operators and we designed tests
that provide a clear understanding of each such elementary
operator. Complex tasks can be typically decomposed into
combinations of basic steps, thus, the performance of more
involved tests can be inferred by that of the primitive com-
ponents. In addition, basic operators are often implemented
by opaque components in the system, therefore, by identi-
fying the underperformed operators it is easy to determine
system components with limited performance.

The specific contributions of this work are the following:
(i) We explain the limitations of existing graph database
evaluations, and clarify the motives of the current evalu-
ation study (Section 2); (ii) We describe the model of a
graph database and present the most well-known such sys-
tems, both old and new, the features that each one provides,
and highlight the implementation choices that characterize
them (Section 3); (iii) Based on a systematic study of the
existing literature, we provide an extensive list of funda-
mental primitive operations (queries) that graph databases
should support (Section 4); (iv) We introduce an exhaustive
experimental evaluation methodology for graph databases,
driven by the micro-benchmarking model. The methodology
consists of queries identified previously and a number of syn-
thetic and real-world datasets at different scales, complex-
ity, distribution and other characteristics (Section 5). For
fairness across systems, the methodology adopts a standard
application interface, the Gremlin query language, which
allows the testing of each system using the same set of op-
erations; (v) We materialize the methodology into a testing

suite based on software containers, which is able to auto-
mate the installation and investigation of different graph
databases. The suite allows for future extensions with addi-
tional tests, and is available online as open source, alongside
a number of datasets; (vi) We apply this methodology on
the state-of-the-art graph databases that are available to-
day, and study the effect that different real and synthetic
datasets, from co-citation, biological, knowledge base, and
social network domains has on different queries (Section 6),
along with a report on our experience with the set-up, load-
ing, and testing of each system. Note that we focus on
single machine installations, even though some systems may
support clusters, since single-machine installations are still
highly popular [36]. Our goal was, as a first step, to under-
stand how the graph databases perform in a single-machine
installation. The question about which system is able to
scale-out better, may only come after the understanding of
its inherent performance [51, 57]. Multi-machine exploita-
tion is our next step that would naturally complement the
current work.

2. EXISTING EVALUATIONS
Since we focus on the existing evaluation of graph databases

and not of graph processing systems [27, 37, 46], we do not
elaborate further on the latter. For graph databases there
are studies, however most of them are incomplete or have be-
come out-dated. In particular, one of the earliest works [20]
surveys graph databases in terms of their internal repre-
sentation and modeling choices. It compares their differ-
ent data-structures, formats and query languages, but pro-
vides no empirical evidence of their effectiveness. Another
work [18] compares 9 different systems and distinguishes
them into graph databases and graph stores based on their
general features, data modeling capabilities and support for
specific graph query constructs. Unfortunately, not even this
work provides any experimental comparison, and like the
previous one, it includes systems that have either evolved
considerably since then, or have been discontinued.

A different group of studies [29, 40, 41] has focused on
the empirical comparison of the performance of the sys-
tems, but even these studies are limited in terms of com-
pleteness, consistency, and currency of the results. The first
of such works [29] analyzes only 4 systems, two of which are
no longer supported. Its experiments are limited both in
dataset size as well as in number and type of operations
performed. The systems were tested on graphs with at
most 1 million nodes, and the operations supported were
limited to edge and node insertion, edge-set search based
on weights, subgraph search based on 3-hops BFS, and the
computation of betweenness centrality. Update operations,
graph pattern and path search queries are missing, along-
side many scalability tests. A few years later, two empir-
ical works [40, 41] compared almost the same set of graph
databases over datasets of comparable small sizes, but agree
only partially on the concluded results. In particular, the
systems analyzed in the first study [40] were DEX1, Neo4j,
Titan, and OrientDB, while the second study [41] consid-
ered also Infinite Graph. The results have shown that for
batch insertion DEX1 is generally the most efficient system,
unless properties are attached to elements, in which case

1DEX is the old name for the Sparksee system

3

Neo4j is the fastest one [41]. For traversal with breadth-
first search, both works agree that Neo4j is the most ef-
ficient. Nonetheless, the second work claims, but without
proving it, that DEX1 would outperform Neo4j on bigger
and denser graphs [41]. In the case of computing unweighted
shortest paths between two nodes, Neo4j performs best in
both studies, but while Titan ends up being the slowest
in the first study [40], it is one of the fastest in the sec-
ond [41]. For node-search queries, the first work [40] shows
that both DEX1 and OrientDB are the best systems when
the selection is based on node identifiers, while the other [41],
which implements the search based on a generic attribute,
shows Neo4j as the winner. Finally, on update operations,
the two experimental comparisons present contradicting re-
sults, showing in one study favorable results for DEX1 and
OrientDB, while in the other for Neo4j. Due to these differ-
ences, these studies have failed to deliver a consistent pic-
ture of the available systems, and also provide no easy way
of extending them with additional tests and systems.

The benchmarks proposed in the literature to test the per-
formance of graph databases are also of high significance [19,
21, 32]. Benchmarks typically come with tools to automat-
ically generate synthetic data, sampling techniques to be
used on real data, and query workloads that are designed to
pinpoint bottlenecks and shortcomings in the various imple-
mentations. These existing benchmarks are domain specific,
i.e., RDF focused [19,21] or social network focused [32], but
despite the fact that we do not use any of them directly, the
design principles and the datasets upon which they have
been built have highly influenced our work.

3. GRAPH DATABASES

3.1 Data Model
Graph data are data consisting of nodes (also called ver-

tices) and connections between them called edges. There
are various types of graphs depending on the kind of anno-
tations one assumes. In this work we consider generic graphs
where every edge has a label and every node or edge has a
set of attributes that describes its characteristic properties.

Formally, we axiomatically assume the existence of an in-
finite set of names N and an infinite set of values A. A
property is an element in the set N⇥A of name-value pairs.

A graph is then a tuple G=hV,E, l, pi where V is a set
of nodes, E is a set of edges between them, i.e., E✓V⇥V ,
l:E!N is an edge labeling function, and p:{V [E} ! 2N⇥A

is a property assignment function on edges and nodes.
Note that the above model allows different nodes to have

exactly the same properties, and different edges to have ex-
actly the same label and set of properties. To be able to
distinguish the different nodes or edges, systems extend the
implementation of the above model by means of unique iden-
tifiers. In particular, they consider a countable set O of
unique values and a function id:{N[E}!O that assigns to
each node and edge a unique value as its identifier. Further-
more, the nodes and edges, as fundamental building blocks
of graph data, are typically implemented as atomic objects
in the systems and are referred to as such.

Figure 2 illustrates a portion of graph data. The annota-
tions containing the colon symbol “ : ” are the properties,
while the others are the labels. The number on each node
indicates its identifier. For presentation reasons we have
omitted the ids on the edges.

ma
rr

ie
d

in
:

19
92

president_of
since: 2009

name: U.S.A.
population: 319M

fname: Barack
lname: Obama

fname: Michelle
lname: Obama

married
in:
1992

13

2

Figure 2: A portion of graph data

3.2 Systems
For a fair comparison we need all systems to support a

common access method. Tinkerpop [5], an open source,
vendor-agnostic, graph computing framework, is currently
the only common interface in most graph databases. TinkerPop-
enabled system are able to process a common query lan-
guage: the Gremlin language. Thus, we chose systems that
support some version of it through officially recognized im-
plementations. Furthermore, we consider systems with a
licence that permits the publication of experimental com-
parisons, and also those that were made available to us to
run on our server without any fee. Table 1 summarizes
the characteristics of the systems we consider in our study.
Among others, we show the query languages that these sys-
tems support (other than Gremlin). We would’ve also in-
cluded GraphDB [12] and InfiniteGraph [10], but licensing
issues of the first did not allow us to publish any performance
verification results, while the second has been discontinued.

3.2.1 ArangoDB.
ArangoDB [6] is a multi-model database. This means that

it can work as a document store, a key/value store and a
graph database, all at the same time. With this model, ob-
jects like nodes, edges or documents, are treated the same
and stored into special structures called collections. Apart
from Gremlin, it supports its own query language, called
AQL, ArangoDB Query Language, which is an SQL like di-
alect that supports multiple data models with single docu-
ment operations, graph traversals, joins, and transactions.
The core, which is open-source (Apache License 2.0), is writ-
ten in C++, and is integrated with the V8 JavaScript En-
gine (github.com/v8/v8). That means that it can run user-
defined JavaScript code, which will be compiled to native
code by V8 on the fly, while AQL primitives are written in
C++ and will be executed as such. Nonetheless, the sup-
ported way of interacting with the database system is via
REST API and HTTP calls, meaning that there is no direct
way to embed the server within an application, and that
every query will go through a TCP connection.

It supports ACID transactions by storing data modifica-
tion operations in a write-ahead log, which is a sequence of
append-only files containing every write operations executed
on the server. While ArangoDB automatically indexes some
system attributes (i.e., internal node identifiers), users can
also create additional custom indexes. As a consequence,
every collection (documents, nodes or edges) has a default
primary index, which is an unsorted hash index on object
identifiers, and, as such, it can be used neither for non-
equality range queries nor for sorting. Furthermore, there
exists a default edge index providing for every edge quick
access to its source and destination. ArangoDB can serve

4

github.com/v8/v8

Table 1: Features and Characteristics of the tested systems
System Type Storage Edge Traversal Gremlin Query Execution Access Languages
ArangoDB (2.8) Hybrid (Document) Serialized JSON Hash Index v2.6 AQL, Non-optimized REST (V8 Server) AQL, Javascript
BlazeGraph (2.1.4) Hybrid (RDF) RDF statements B+Tree v3.2 Programming API, Non-optimized embedded, REST Java, SPARQL
Neo4J (1.9, 3.0) Native Linked Fixed-Size records Direct Pointer v2.6 / v3.2 Programming API, Non-optimized embedded, WebSocket, REST Java, Cypher,
OrientDB (2.2) Native Linked Records 2-hop Pointer v2.6 Mixed, Mixed embedded, WebSocket,REST Java, SQL-like
Sparksee (5.1) Native Indexed Bitmaps B+Tree/Bitmap v2.6 Programming API, Non-optimized embedded Java, C++,Python, .NET
SQLG (1.2) / Postgres (9.6) Hybrid (Relational) Tables Table Join v3.2 SQL, Optimized(*) embedded (JDBC) Java
Titan (0.5, 1.0) Hybrid (Columnar) Vertex-Indexed Adjacency List Row-Key Index v2.6 / v3.0 Programming API, Optimized embedded, REST Java

multiple requests in parallel and supports horizontal scale-
out with a cluster deployment using Apache Mesos [4].

3.2.2 BlazeGraph.
Blazegraph [15] is open-source and available under GPLv2

or under a commercial licence. It is an RDF-oriented graph
database entirely written in Java. Other than Gremlin, it
supports SPARQL 1.1, storage and querying of reified state-
ments, and graph analytics.

Storage is provided through a journal file with support
for index management against a single backing store, which
scales up to 50B triples or quads on a single machine. Full
text indexing and search facility are built using a key-range
partitioned distributed B+Tree architecture. The database
can also be deployed in different modes of replication or
distribution. One of them is the federated option that im-
plements a scale-out architecture, using dynamically parti-
tioned indexes to distribute the data across a cluster. While
updates on the journal and the replication cluster are ACID,
updates on the federation are shard-wise ACID. Blazegraph
uses Multi-Version Concurrency Control (MVCC) for trans-
actions. Transactions are validated upon commit using a
unique timestamp for each commit point and transaction.
If there is a write-write conflict the transaction aborts. It
can operate as an embedded database, or in a client-server
architecture using a REST API and a SPARQL end-point.

3.2.3 Neo4J.
Neo4j [11] is a database system implemented in Java and

distributed under both an open source and commercial li-
cence. It provides its own unique language called Cypher,
and supports also Gremlin, and native Java API. It employs
a custom disk-based native storage engine where nodes, re-
lationships, and properties are stored separately on disk.
Dynamic pointer compression expands the available address
space as needed, allowing the storage of graphs of any size
in its latest version. Full ACID transactions are supported
through a write-ahead log. A lock manager applies locks on
the database objects that are altered during the transaction.

Neo4j has in place a mechanism for fast access to nodes
and edges that is based on IDs. The IDs are basically off-
sets in one of the store files. Hence, upon the deletion of
nodes, the IDs can be reclaimed for new objects. It also
supports schema indexes on nodes, labels and property val-
ues. Finally, it supports full text indexes that are enabled
by an external indexing engine (Apache Lucene [3]), which
also allows nodes and edges to be viewed and indexed as
“key:value” pairs. Other Neo4J features include replication
modes and federation for high-availability scenarios, causal
cluster, block device support, and compiled runtime.

3.2.4 OrientDB.
OrientDB [13] is a multi-model database, supporting graph,

document, key/value, and object data models. It is written
in Java and is available under the Apache licence or a Com-
mercial licence. Its multi-model features Object-Oriented

concepts with a distinction for classes, documents, docu-
ment fields, and links. For graph data, a node is a docu-
ment, and an edge is mapped to a link. Various approaches
are provided for interacting with OrientDB, from the native
Java API (both document-oriented and graph-oriented), to
Gremlin, and extended SQL, which is a SQL-like query lan-
guage.

OrientDB features 3 storage types: (i) plocal, which is
a persistent disk-based storage accessed by the same JVM
process that runs the queries; (ii) remote, which is a network
access to a remote storage; and (iii) memory-based, where
all data is stored into main memory. The disk based storage
(also called Paginated Local Storage) uses a page model and
a disk cache. The main components on disk are files called
clusters. A cluster is a logical portion of disk space where
OrientDB stores record data, and each cluster is split into
pages, so that each operation is atomic at page level. As we
will discuss later (Section 6), the peculiar implementation
of this system provides a good performance boost but poses
an important limitation to the storing of edge labels.

OrientDB supports ACID transactions through a write
ahead log and a Multiversion Concurrency Control system
where the system keeps the transactions on the client RAM.
This means that the size of a transaction is bounded by the
JVM available memory. OrientDB also implements SB�Tree
indexes (based on B-Trees), hash indexes, and Lucene full
text indexes. The system can be deployed with a client-
server architecture in a multi-master distributed cluster.

Sqlg/Postgresql. Sqlg [48] is an implementation of Apache
TinkerPop on a relational DBMS. Postgresql [55] is one
among those RDBMS supported, and the one we chose for
our experiments. Sqlg provides Java API to the gremlin
language, and the underlying implementation maps graph
semantics to that of the RDBMS. It is possible to also send
standard SQL queries directly to the back-end relational
database, although this is not often convenient. For graph
data, a vertex label is modeled by a table, containing all
vertices with that label, and all the vertex’s properties. An
edge label is modeled as a many-to-many join-table between
the vertices, Similarly to vertices, edge labels are mapped to
tables. containing the vertex ID of the two edge endpoints
alongside the edge properties. Indexes, transactions and
parallelization are inherited from the underlying database
system.

3.2.5 Sparksee.
Sparksee [14, 49], formerly known as DEX [50], is a com-

mercial system written in C++ optimized for out-of-core op-
erations. It provides a native API for Java, C++, Python
and .NET platforms, but it does not implement any other
query language apart from Gremlin.

It is specifically designed for labeled and attributed multi-
graphs. Each vertex and each edge are distinguished by
permanent object identifiers. The graph is then split into
multiple lists of pairs and the storage of both the structure

5

and the data is partitioned into different clusters of bitmaps
for a compact representation. This data organization allows
for more than 100 billion vertices and edges to be handled
by a single machine. Bitmap clusters are stored in sorted
tree structures that are paired with binary logic operations
to speedup insertion, removal, and search operations.

Sparksee supports ACID transaction with a N-readers and
1�writer model, enabling multiple read transactions with
each write transaction being executed exclusively. Both
search and unique indexes are supported for node and edge
attributes. In addition a specific neighbor index can also
be defined to improve certain traversal operations. Finally,
Sparksee provides horizontal scaling, enabling several slave
databases to work as replicas of a single master instance.

3.2.6 Titan.
Titan [16] is available under the Apache 2 license. The

main part of the system handles data modeling, and query
execution, while the data-persistence is handled by a third-
party storage and indexing engine to be plugged into it. For
storage, it can support an in-memory storage engine (not
intended for production use), Cassandra [1], HBase [2], and
BerkeleyDB [7]. To store the graph data, Titan adopts the
adjacency list format, where each vertex is stored alongside
the list of incident edges. In addition, each vertex property
is an entry in the vertex record. Titan adopts Gremlin as its
only query language, and Java as the only compatible pro-
gramming interface. No ACID transactions are supported in
general, but are left to the storage layer that is used. Among
the three available storage backends only Berkeley DB sup-
ports them. Cassandra and HBase provide no serializable
isolation, and no multi-row atomic writes.

Titan supports two types of indexes: graph centric and
vertex centric. A graph index is a global structure over the
entire graph that facilitates efficient retrieval of vertices or
edges by their properties. It supports equality, range, and
full-text search. A Vertex-centric index, on the other hand,
is local to each specific vertex, and is created based on the
label of the adjacent edges and on the properties of the ver-
tex. It is used to speed up edge traversal and filtering, and
supports only equality and range search. For more com-
plex indexing external engines like Apache Lucene or Elas-
ticSearch [9] can be used. Due to the ability of Cassandra
and HBase to work on a cluster, Titan can also support the
same level of parallelization in storage and processing.

3.3 Architectures and Query Processing
There are two ways to implement a graph database. One

is to build it from scratch (native databases) and the other
to achieve the required functionalities through other existing
systems (hybrid databases). In both cases the two challenges
to solve are how to store the data and how to traverse these
stored structures.

3.3.1 Native System Architectures:
For data storage, a common design principle is to separate

information about the graph structure (nodes and edges)
from other they may have, e.g., attribute values, to speed-
up traversal operations.

Neo4J has one file for node records, one file for edge
records, one file for labels and types, and one file for at-
tributes. OrientDB stores information about nodes, edges

and attributes similarly, in distinct records. In both sys-
tems, node and edge records contain pointers to other edges
and nodes, and also to types and attributes, but the organi-
zation is different in the two systems. In Neo4J nodes and
edges are stored as records of fixed size and have unique IDs
that correspond to the offset of their position within the cor-
responding file. In this way, given the id of an edge, it is
retrieved by multiplying the record size by its id, and read-
ing bytes at that offset in the corresponding file. Moreover,
being records of fixed size, each node record points only to
the first edge in a doubly-linked list, and the other edges
are retrieved by following such links. A similar approach is
used for attributes. In OrientDB, on the other hand, record
IDs values are not linked directly to a physical position, but
point to an append-only data structure, where the logical
identifier is mapped to a physical position. This allows for
changing the physical position of an object without chang-
ing its identifier. In both cases, given an edge, to obtain its
source and destination requires constant time operations,
and inspecting all edges incident on a node, hence visiting
the neighbors of a node, has a cost that depends on the node
degree and not on the graph size.

Sparksee decomposes data into separate data-structures:
one structure for objects, which refers to both nodes and
edges, two for relationships which describe which nodes and
edges are linked to each other, and a data-structure for each
attribute name. Each of these data-structures is in turn
composed by a map from keys to values, and a bitmap for
each value [49]. In each data-structure objects are identified
by IDs generate sequentially, and each ID is linked as key
trough the map to one single value. Also, each value links to
a bitmap, where each bit corresponds to an object ID, and
the bit is set if that object has that value. Given a label, one
can scan the corresponding bitmap to identify which edges
share the same label. Furthermore, each bitmap identifies
all edges incident to a node. For the attributes a similar
mechanism is used. The main advantage of this organiza-
tion is that many operations become bitwise operations on
bitmaps, although operations like edge traversals have no
constant time guarantees.

3.3.2 Hybrid System Architectures:
ArangoDB is based on a document store. Each docu-

ment is represented as a self contained JSON object (seri-
alized in a compressed binary format). To implement the
graph model, ArangoDB materialize JSON objects for each
node and edge. Each object contains links to the other ob-
jects to which it is connected, e.g., a node lists all the IDs of
incident edges. A specialized hash index is in place, in or-
der to retrieve the source and destination nodes for an edge,
this speed-ups many traversals. BlazeGraph is an RDF
database and stores all information into Subject-Predicate-
Object (SPO) triples. Each statement is indexed three times
by changing the order of the values in each triple, i.e., a
B+Tree is built for each one of SPO, POS, OSP. Blaze-
Graph stores attributes for edges as reified statements, i.e.,
each edge can assume the role of a subject in a statement.
Hence, traversing the structure of the graph may require
more than one accesses to the corresponding B+Tree.

In Sqlg the graph structure consists of one table for each
edge type, and one table for each node type. Each node and
edge is identified by a unique ID, and connections between
nodes and edges are retrieved through joins. The limitation

6

of this approach is that unions and joins are required even
for retrieving the incident edges of a node.

Finally, Titan represents the graph as a collection of ad-
jacency lists. With this model the system generates a row
for each node, and then one column for each node attribute
and each edge. Hence, for each edge traversal, it needs to
access the node (row) ID index first.

3.3.3 Query Processing and Evaluation:
All the systems we considered support Gremlin. A Grem-

lin query is a series of operations. Consider, for instance,
query 28 in Table 2, which selects nodes with at least k in-
coming edges. It first filters nodes (g.V.filter{...}) and
then the incoming edges are counted (it.inE.count()) for
every node in the output of the filter.

In ArangoDB each step is converted into an AQL query
and sent to the server for execution, so the above Grem-
lin query will be executed as a series of two independent
AQL queries implementing its two parts. ArangoDB does
not provide any overall optimization of these parts. Note
that Gremlin is a touring-complete language and can de-
scribe complex operations that declarative languages, like
AQL or Cypher, may not be able to express in one query.
The only other query system that translates all operations
to a declarative query language is Sqlg. Where possible, the
system tries to conflate operators in a single query, which
is some form of query optimization. All the other systems
translate Gremlin queries directly into a sequence of low-
level operators with direct access to their programming API,
evaluate every operator, and pass the result to the next in
the sequence. In OrientDB, in particular, some consequent
operators may get translated into queries and then the pro-
cessed with the programming API, resulting in some form
of optimization for a part of the query. Titan, which has
Gremlin as the only supported query language, features also
some optimization during query processing.

4. QUERIES
To generate the set of queries to run on the systems we fol-

low a micro-benchmark approach [25]. The list is the results
of an extensive study of the literature and of many practi-
cal scenarios. Of the many complex situations we found, we
identified the very basic operations of which they were com-
posed. We eliminated repetitions and ended up with a set of
common operations that are independent from the schema
and the semantics of the underlying data, hence, they enjoy
a generic applicability.

In the query list we consider different types of operations.
We consider all the “CRUD” kinds, i.e., Creations, Reads,
Updates, Deletions, for nodes, edges, their labels, and for
their properties. Specifically for the creation, we treat sepa-
rately the case of the initial loading of the dataset from the
individual object creations. The reason is because the first
happens in bulk mode on an empty instance, while the sec-
ond at run time with data already in the database. We also
consider traversal operations across nodes and edges, which
is characteristic in graph databases. Recall that operations
like finding the centrality, or computing strongly connected
components are for graph analytic systems and not typi-
cal in a graph database. The categorization we follow is
aligned to the one found in other similar works [18, 40, 41]
and benchmarks [32]. The complete list of queries can be
found in Table 2 and is analytically presented next. The

syntax is for Gremlin 2.6, but the syntax for gremlin version
3 is quite similar.

4.1 Load Operations
Data loading is a fundamental operation. Given the size of

modern datasets, understanding the speed of this operation
is crucial for the evaluation of a system. The specific oper-
ator (Query 1) reads the graph data from GraphSON2 file.
In general it’s bound to the speed with which objects are in-
serted, which will be affected by any index in place and any
other consistency check. In some cases GDBs have in place
special methods or configurations to allow bulk loading, e.g.,
to deactivate indexing, but in general they are vendor spe-
cific, i.e., not found in the Gremlin specifications. Some of
them will be described later (Section 7).

4.2 Create Operations
The first category of operations (C) includes operators

that create new structures in the database. In this group we
consider anything that generates new data-entries. Creation
operators may be for nodes, edges, or even properties on
existing nodes or edges. Often, to create a complex object,
e.g., a node with a number of connections to existing nodes,
many different such operators may have to be called. Among
the others, we also consider a special composite workload
where we first insert a node and then also a set of edges
connecting it to other existing nodes in the graph.

Insert Node (Query 2) The operator creates a new node
in the database with the set of properties that are provided
as argument, but without any connection (edges) to other
nodes.

Insert Edge (Queries 3, and 4) This operator creates a
new edge in the graph between the two nodes specified as
arguments, and with the provided label. In a second version,
the operator can also take a set of properties as additional
argument. In the experiments performed we randomly select
nodes among those in the graph, we choose a fresh value as
label, and a custom property name and value pair.

Insert Property (Queries 5, and 6) These two operators
test the addition of a new property to a specific node and
to a specific edge, respectively. The node (or the edge) is
explicitly stated, i.e., referred, through its unique id, and,
there is no search task involved since the lookup for the
object with the specific identifier is performed before the
time is measured. In this case the operation are applied
directly to the node and edge (v and e).

Insert Node with Edges (Query 7) This operation re-
quires the insertion of a new node, alongside a number of
edges that connect it to other nodes already existing in the
database.

4.3 Read Operations
The category of read operations comprises queries that

locate and access some part of the graph data stored in the
system that satisfy certain conditions. Sometimes, such part
may end up being the entire graph.

Graph Statistics (Queries 8, 9, and 10) Many operations
often require a scan over the entire graph datasets. Among

2A JSON-based format tinkerpop.apache.org/docs/

current/reference/#graphson-io-format

7

tinkerpop.apache.org/docs/current/reference/#graphson-io-format
tinkerpop.apache.org/docs/current/reference/#graphson-io-format

Table 2: Test Queries by Category (in Gremlin 2.6)
Query Description Cat
1. g.loadGraphSON("/path") Load dataset into the graph ‘g’ L
2. g.addVertex(p[]) Create new node with properties p

C

3. g.addEdge(v1 , v2 , l) Add edge l from v1 to v2

4. g.addEdge(v1 , v2 , l , p[]) Same as q.3, but with properties p

5. v.setProperty(Name, Value) Add property Name=Value to node v

6. e.setProperty(Name, Value) Add property Name=Value to edge e

7. g.addVertex(. . .); g.addEdge(. . .) Add a new node, and then edges to it
8. g.V.count() Total number of nodes

R

9. g.E.count() Total number of edges
10. g.E.label.dedup() Existing edge labels (no duplicates)
11. g.V.has(Name, Value) Nodes with property Name=Value
12. g.E.has(Name, Value) Edges with property Name=Value
13. g.E.has(’label’,l) Edges with label l
14. g.V(id) The node with identifier id

15. g.E(id) The edge with identifier id

16. v.setProperty(Name, Value) Update property Name for vertex v U
17. e.setProperty(Name, Value) Update property Name for edge e

18. g.removeVertex(id) Delete node identified by id

D19. g.removeEdge(id) Delete edge identified by id

20. v.removeProperty(Name) Remove node property Name from v

21. e.removeProperty(Name) Remove edge property Name from e

22. v.in() Nodes adjacent to v via incoming edges

T

23. v.out() Nodes adjacent to v via outgoing edges
24. v.both(‘l’) Nodes adjacent to v via edges labeled l
25. v.inE.label.dedup() Labels of in coming edges of v (no dupl.)
26. v.outE.label.dedup() Labels of outgoing edges of v (no dupl.)
27. v.bothE.label.dedup() Labels of edges of v (no dupl.)
28. g.V.filter{it.inE.count()>=k} Nodes of at least k-incoming-degree
29. g.V.filter{it.outE.count()>=k} Nodes of at least k-outgoing-degree
30. g.V.filter{it.bothE.count()>=k} Nodes of at least k-degree
31. g.V.out.dedup() Nodes having an incoming edge
32. v.as(‘i’).both().except(vs).store(j).loop(‘i’) Nodes reached via breadth-First traversal from v

33. v.as(‘i’).both(*ls).except(j).store(vs).loop(‘i’) Nodes reached via breadth-First traversal from v on labels ls

34. v1.as(’i’).both().except(j).store(j).loop(’i’) Unweighted Shortest Path from v1 to v2

{!it.object.equals(v2).retain([v2]).path()}
35. v1.as(’i’).both(‘l’).except(j).store(j).loop(’i’) Same as q.34, but only following label l

{!it.object.equals(v2).retain([v2]).path()}
⇤ The symbol [] denotes a Hash Map structure

the queries of this type, three operators were included in
the query evaluation set. One that scans and counts all
the nodes, one that does the same for all edges, and one
that counts the unique labels of the edges. The goal of the
last operation is also to stress-test the ability of the system
to maintain intermediate information in memory, since it
requires to eliminate duplicated before reporting the results.

Search by Property (Queries 11, and 12) These two queries
are typical selections. They identify nodes (or edges) that
have a specific property. The name and the value of the
property are provided as arguments. There may be a unique

object satisfying the condition of having the specific prop-
erty, or there may be more than one.

Search by Label (Query 13) The search by label task is
similar to the search by property, but has only one operator
since labels are only on edges. Labels are fundamental com-
ponents of almost every graph dataset, and this is probably
the reason why the syntax in Gremlin 3.x distinguishes be-
tween labels and properties with a special provision, while
in 2.6, they were treated equally. In a graph database edge
labels have a primary role, also usually, labels are not op-
tional and are immutable, hence searching edges based on a
specific label should receive special attention.

Search by Id (Queries 14, and 15) As it happens in almost

8

any other kind of database, a fundamental search operation
is the one done by reference to a key, i.e., ID. Those are
system defined, and in some cases based on the internal data
organization of the system. These two queries have been
included, to retrieve a node and an edge via their unique
identifier.

4.4 Update Operations
Data update operators are typical of dynamic data, and

graph data is no exception. Since edges are first class citizens
of the system, an update of the structure of the graph, i.e.,
on the connectivity of two or more nodes, requires either
the creation of new edges or deletion of existing. In contrast,
updates on the properties of the objects are possible without
deletion/insertion, as it happens in other similar databases.
Thus, we have included Queries 16, and 17 to test the ability
of a system to change the value of a property of a specific
node or an edge. In this case, as above, we do not consider
the time required to first retrieve the object to be updated.

4.5 Delete Operations
To test how easily and efficiently data can be removed

from a graph database, we included three types of deletions:
one for a node, one for an edge and one for a property.

Delete Node (Query 18) Deleting a specific node requires
the elimination of all its properties, all its edges, as well as
the node itself. It may result to a very costly operation when
many different data-structures are involved.

Delete Edge (Query 19) Similarly to the node case, delet-
ing an edge requires the prior removal of its properties. This
operation is probably one of the most common delete oper-
ations in continuously evolving graphs.

Delete Property (Queries 20, and 21) The last two queries
eliminate a property from an node or an edge, respectively.
As the structure of a node or edge is not fixed, it may happen
that either element lose a property.

4.6 Traversals
The ability to conveniently perform traversal operations

is one of the main reason why graph models are preferred
to others. A traversal means moving across different nodes
that are connected in a consecutive fashion through edges.

Direct Neighbors (Queries 22, 23) A popular operation is
the one that, given a node, retrieves those directly reachable
from it (1-hop), i.e., those that can be found by following
either an incoming or an outgoing edge.

Filter Direct Neighbors (Query 24) The specific query
performs a traversal of only one hop, and for edges having
a specific label. The reason why it is considered separately
from other traversals is because it is very frequent and in-
volves no recursion, and as such, it is often subject to sepa-
rate efficient implementation by the various systems.

Node Edge-Labels (Queries 25, 26, and 27) Given a node,
there is often the need to know the labels of the incoming,
outgoing, or both edges. These three kinds of retrieval is
exactly what this set of three queries perform, respectively.

K-Degree Search (Queries 28, 29, 30, and 31) For many
real application scenarios there is a need to identify nodes
with many connections, i.e., edges, since this is an indicator
of the importance of a node. The number of edges a node has

is called the degree of the node, and nodes with high degree
are usually hubs in the network. The first three queries
identify and retrieve nodes with at least k edges. They differ
from each other in considering only incoming edges, only
outgoing, or both. The fourth query identifies nodes with at
least one incoming edge and is often used when a hierarchy
needs to be retrieved.

Breadth-First Search (Queries 32, and 33) A number of
search operations give preference to nodes found in close
proximity, and they are better implemented with a breadth-
first search from a given node. This ability is tested with
these two queries, with the second being a special case of
the first that considers only edges with a specific label.

Shortest Path (Queries 34, and 35) Another traditional
operation on graph data is the identification of the path be-
tween two nodes that contain the smallest number of edges.
For this we included these two queries, with the second query
being a special case of the first that considers only edges with
a specific label. In particular, given an unweighted graph,
they determine the shortest path between two nodes via a
BFS-like traversal.

4.7 Complex Query Set
In order to test the ability of the systems to optimize

complex queries, i.e., collectively optimize multiple prim-
itive operators, we also created a workload of 12 queries
based on queries provided by the LDBC Social Network
benchmark [32]. The queries mimic the tasks carried out
for a new user in the system, from the point of creating an
account (creating a new node with attributes) and filling
up her profile (connecting to nodes representing the school,
the place of birth and the workplace), to the point of mak-
ing recommendations of topics and other users. For these
operations there are queries in the workload with compo-
sition of multiple primitive operators, multiple joins predi-
cates, group by, sorting, max finding, and top-k. Since these
queries are heavily dependent on the schema of the dataset,
they can be run solely on the ldbc dataset presented below
(Section 5).

Max-search To add a new user we should assign an unique
identifier to it. In the ldbc dataset objects have two different
properties, one is ‘oid ’ and the other is the ‘iid ’, the first is a
string the second is an integer. Although in real applications
this is handled different, here we search for the maximum
value for both (queries ‘max-iid ’ and ‘max-oid ’), and the we
will increment these values and use them when creating a
new node for a user.

User Creation We create a new node for a user, we take
all the attributes that a user has and attach those attribute
to the node created. We will also assign to it the two values
for ‘iid ’ and ‘oid ’ obtained previously.

User Profile Once the node for the user is created, we
connect it to other nodes signifying some personal details.
In particular we issue a query for finding places, companies
and universities with name starting with some combination
of letters. For each of those we take the first in alphabetical
order and add an edge between the node of the user and
the node of the place. Those represent the city where she
lives, the company where she works at, and the university

9

in which she studied.

User Friends We also search and add as friends other exist-
ing users. Users to be added as friends (i.e., connected via
an edge labeled ‘knows’) are selected based on a selection
on their first name (‘friend1 ’), and on a selection based on
both first and last name (‘friend2 ’). All results are sorted
in ascending order based on the name and only the top-10
results are returned.

Recommending Tags Tags are similar to labeled topics,
and users are connected to the nodes representing the topics
they like. We first select among the tags liked by the user
friend, the top 10 tags with highest number of likes (‘friend-
tags’), and then connect those tags to the user (‘add-tags’).

Friend Search and Recommendation The last part of
the workload explored the neighborhood of a user node search-
ing for friends. In the first query (‘friend-of-friend ’) we find
up to 10 people with a given first name that the user is con-
nected to by at most 3 steps via ‘knows’ relationships. For
the retrieved persons we return their personal information,
including workplaces and places of study. The retrieved per-
sons are sorted by their distance from the user.

In the second query we recommend instead friend of friends,
that are not already friend of the user, simulating in this way
a first iteration of triangle closure.

5. EVALUATION METHODOLOGY
Fairness, reproducibility, and extensibility have been three

fundamental principles in our evaluation of the different sys-
tems. In particular, a common query language and input
format for the data has been adopted for all the systems.
For the query executions, it has been ensured that they have
been performed in isolation so that they have not been af-
fected by external factors. Any random selection made in
one system (e.g., a random selection of a node in order to
query it) has been maintained the same across the other sys-
tems. Furthermore, all experiments have been performed on
the same machine to avoid any effect caused by hardware
variations. The goal is to perform a comparative evalua-
tion and not an evaluation in absolute terms. Both real and
synthetic datasets have been used, especially on large vol-
umes in order for the experiments to be able to highlight
the differences across the systems. Finally, our evaluation
methodology has been materialized in a test suite and is
available on-line [43] It contains scripts, data and queries,
and is extensible to new systems and queries.

Common Query Language. We have opted for a com-
mon query language across all the systems to ensure that the
semantics of the queries we run are interpreted in the same
way by the different systems. In particular, we selected as
application layer the Apache TinkerPop [5] framework and
the expressive query language Gremlin [56], which is the
most supported language across graph databases. In the
context of graph databases, TinkerPop acts as a database-
independent connectivity layer, while Gremlin is the anal-
ogous to SQL in relational databases [38]. All the graph
databases we tested have adapters for Gremlin already im-
plemented and supported by the various database vendors.

Software Containers. To ensure full control over the en-
vironment in which each system runs, and to facilitate re-
producibility, we opted for installing and running each graph

database within a dedicated software container [24]. A pop-
ular solution is Docker [8], an open source software that
creates a level of “soft” virtualization of the operating sys-
tem, which allows an application within the environment to
access machine resources directly without the overhead of
interacting with an actual virtual machine. Furthermore,
thanks to the so called overlay file-system (AUFS [53]), it
is possible to create a “snapshot” of a system and it’s files,
and then share the entire computational environment. This
allows the sharing of our one-click installation scripts for
all the databases and our testing environment, so that the
experiments can be repeated elsewhere.

Hardware. For the experiments we used a machine with
a 24-core CPU, an Intel Xeon E5-2420, 1.90GHz processor,
128 GB of RAM, 2TB hard disk with 20000 rpm, Ubuntu
14.04.4 operating system, and with Docker 1.13, configured
to use AUFS on ext4. Each graph database was configured to
be free to use all the available machine resources, e.g., for the
JVM we used the option -Xmx120GB. For other parameters
we used the settings recommended by the vendor. The latter
applies also to Apache Cassandra that was serving as the
back-end for Titan.

Evaluation Approach. The Gremlin queries are called for
execution via Groovy3 scripts. For the systems supporting
different major versions of Gremlin, we tested both. The
reason is that since the latest version came out recently, we
would like to illustrate the difference in performance that has
been achieved and help stakeholders having an old system in
in operation to decide whether it is worth the extra step of
upgrading them. Furthermore, the difference between the
versions illustrates the space for improvement that exists,
an area that our current work can help significantly.

All system were tested using the embedded mode, where
direct Java calls are sent to the system, and the applica-
tion runs within the JVM of the engine. The only exception
was ArangoDB and Sqlg. They may receive Gremlin com-
mands through the Java API, but in the back-end perform
REST and/or JDBC calls to the underlying storage engine.
Nonetheless, since all storage systems operate locally, there
is no delay due to network routing or latency.

Note that Gremlin has no specification for indexes. Some
systems create indexes automatically in a way agnostic to
the user while others require explicit commands in their own
language. We considered both the default behavior of not
taking any action and letting the system go with its de-
fault indexing policy, and the case of explicitly creating the
needed indexes.

In the case of queries with parameters, for fair compar-
isons, the parameter values are decided in advance and kept
the same for all the systems. For instance, query 14 needs
the ID of the node to retrieve. If a different node is retrieved
in every system, then it wont be possible to compare them.
For this reason, when we need to evaluate a query, we first
decide the parameters to use and then start the executions
on the different systems. The same applies on queries that
need to start from a node or an edge, e.g. query 22 needs
to know the node v. For these queries, the node is decided
first and then the query is run for that same node in all the
systems. Naturally, the time needed to identify the node (or
edge) that will be used in the query and retrieve its id, is

3A superset of Java: groovy-lang.org

10

groovy-lang.org

not part of the time reported as execution time for the re-
spective queries. A similar approach is followed also for the
multi-fold evaluation. When we perform k runs of the same
query on the same system and dataset (to select the aver-
age response time as the indicative performance), we first
select k parameter values, nodes, or edges to query (usually
through random sampling), and then perform each of the k

runs with one of these k parameters (or nodes, or edges).
Here each query is executed k =10 times.

In the scalability studies of queries 11 and 12 that are
performing selection based on a property value, it is impor-
tant that the performance variation observed when running
the same query on datasets of different sizes is due to the
size of the data and not due to the cardinality variation
of the answer set. To achieve this goal, we select to use
properties that not only exist in all the datasets of different
sizes, but also have the same cardinality in all of them. In
case such properties do not exist, we create and assign at
loading time two different properties with predefined names
to 10 random edges and 10 random nodes in each dataset
and then use these property names for queries 11 and 12.
(The different case of the same type of query run on the
same dataset producing results of different cardinalities is
covered by the different parameter values that are decided
in the k-fold experiments.)

Unfortunately, almost all the databases, when loading the
data, create and assign their own internal identifiers. This
creates a problem when we later need to run across all the
systems the same query that is using the identifier as a pa-
rameter. For this reason, when loading the data, we add to
every node a property h“objectID”, idi where the id is the
node identifier in the original dataset. As a result, even if
the system decides to replace the identifier of the node with
an internal one, we still have a way to find the node using
the objectID property. So before starting the evaluation of
query g.V (id), for instance, on the graph database system S,
where id is the node identifier in the original dataset, we first
search in the system S and retrieve the internal identifier iid
of the node with the attribute h“objectID”, idi. Then, we
execute the query g.V (iid) instead of the g.V (id), and report
its execution time as the time for the evaluation of Q.14.

The k times that a query execution is repeated are per-
formed first in isolation and then in batch mode. For the
isolation, we turn the system on, run the single query with
one of the parameters, then shut the system off, and reset
the file-system. Then repeat again with the next parameter.
In this way, each run is unaffected by what has run before.
In batch mode, we turn the system on, run the query with
the first parameter, then with the second, then the third,
and so forth. At the end we shut down the system. The iso-
lation mode makes no sense to be repeated for the queries 8,
9, 10, 28, 29, 30 and 31 since they have no graph-dependent
parameters, thus, every isolation mode repetition will be
identical to the others. Thus, these queries are evaluated
only once in isolation and not in batch. In queries 28, 29
and 30, the k has been considered a threshold and not a
parameter, and the fixed value k=50 has been considered
throughout the experiments. In total, for every evaluation
of a specific system with a specific dataset, 337 query exe-
cutions are taking place. To these we add the 120 queries
from the LDBC benchmark.

Test Suite. We have materialized the evaluation proce-
dure into a software package (a test suite) and have made

it available on-line [43], enabling repeatability and exten-
sibility. The suite contains the scripts for installing and
configuring each database in the Docker environment and
for loading the datasets. The queries themselves are also
contained in the suite. There is also a python script that in-
stantiates the Docker container and provides the parameters
required by each query. To test a new query it suffices to
write it into a dedicated script, while in order to perform the
tests on a new dataset one only needs to place the dataset
in GraphSON format in a JSON file in the directory from
where the data are loaded.

Datasets. We have tested our system on both real and syn-
thetic datasets. One dataset (MiCo) describes co-authorship
information crawled from the CS Microsoft Academic por-
tal [31]. Nodes represent authors while edges represent co-
authorship between two authors and have as a label the
number of co-authored papers. Another dataset (Yeast) is
a protein interaction network [23]. Nodes represent budding
yeast proteins (S.cerevisiae) [26] and have as labels the short
name, a long name, a description, and a label based on its
putative function class. Edges represent protein-to-protein
interactions and have as label the two classes of the proteins
involved. A third real dataset is Freebase [34], which is one
of the largest knowledge bases nowadays. Nodes represent
entities or events, and edges model relationships between
them. We have taken the latest snapshot [42, 52] and have
considered four subgraphs of it of different sizes.

Despite the fact that the raw data dump contains 1.9B
triples [34], those comprise duplicate, technical, or experi-
mental meta-data and links to other sources that are com-
monly removed [22, 52], leaving a clean dataset of 300M
facts. The size of the samples were chosen to ensure that
all engines had a fair chance to process them in reasonable
times, and on the other hand to show the system scalability
at levels higher than those of previous works.

One subgraph (Frb-O) was created by considering only
the nodes related to the topics of organization, business,
government, finance, geography and military, alongside their
respective edges. Furthermore, we randomly selected 0.1%,
1%, and 10% of the edges from the complete graph, which
alongside the nodes at their endpoints created 3 graph datasets,
the Frb-S , Frb-M , and Frb-L, respectively.

For a synthetic dataset we used the data generator4 pro-
vided by the Linked Data Benchmark Council5 (LDBC) [32]
to produce a graph that mimics the characteristics of a real
social network with power-law structure, and real-word char-
acteristics like assortativity based on interests or preferences
(ldbc). The generator was instructed to produce a dataset
simulating the activity of 1000 users over a period of 3 years.
The ldbc is the only dataset with properties on both edges
and nodes. The others have properties only on the nodes.

Table 3 provides the characteristics of the aforementioned
datasets. It reports the number of nodes (|V |), edges (|E|),
labels (|L|), connected components (#), the size of the max-
imum connected component (Maxim), the graph density
(Density), the network modularity (Modularity), the aver-
age degree of connectivity (Avg), the max degree of connec-
tivity (Max), and the diameter (�).

As shown in the table, the MiCo and the Frb are sparse,
while the ldbc and Yeast are one order of magnitude denser,

4
github.com/ldbc/ldbc_snb_datagen

5
ldbcouncil.org

11

github.com/ldbc/ldbc_snb_datagen
ldbcouncil.org

which reflects their nature. The ldbc is the only dataset
with a single component, while the Frb datasets are the most
fragmented. The average and maximum degree are reported
because large hubs become bottleneck in traversals.

Evaluation Metrics. For the evaluation we consider the
disk space, the data loading time, the query execution time,
but we also comment on the experience with installing and
running each system.

6. EXPERIMENTAL RESULTS
In the tests we run we noticed that MiCo and ldbc were

giving results similar to the Frb-M and Frb-O . The Yeast
was so small that didn’t highlight any particular issue, es-
pecially when compared to the results of Frb-S . We also tried
to load the full freebase graph Frb-F (with 314M edges and
76M nodes), but only Neo4J, Sparksee, and Sqlg managed
to do so without errors, and only Neo4J (v.3.0) to success-
fully complete all the queries, making it the most scalable.
Moreover, the running times recorded on the full dataset
respected the general trends witnessed with the other sub-
samples. Thus, in what follows, we will talk mainly about
the results of the Frb-S , Frb-O , Frb-M , and Frb-L and only
when there is some different behavior from the others we
will be mentioning it. Additional details about the exper-
imental results on the other datasets can be found below
(Section 6.9).

Regarding the documentation, Neo4J, Sqlg, and OrientDB
provide in-depth information. Sparksee, Titan and ArangoDB
are limited in some aspects, yet clear for basic installation,
configurations and operational needs. The Titan documen-
tation is the less self-contained, especially on how to be con-
figured with Cassandra. Finally, the BlazeGraph documen-
tation is largely outdated.

In terms of system configuration Neo4J doesn’t require
any specific set-up. OrientDB instead supports a default
maximum number of edge labels equal to 32676 divided by
the number of CPU cores, and requires disabling a spe-
cial feature for supporting more. Sqlg has limits on the
maximum length of nodes and edge labels (inherited from
Postgresql). ArangoDB requires two configurations, one for
the engine, and one for the V8 javascript server for logging.
With only default values this system generated 40 GB of log
files in about 24 hours of activity, with a single active client
and it is not able to allocate more than 4GB of memory.
For Titan instead the most important configurations are for
the JVM Garbage Collection and for the Cassandra back-
end. Moreover, for large datasets, it is necessary to disable
automatic schema creation, and create it manually before
data loading.

Finally, the systems based on Java, namely, BlazeGraph,
Neo4J, OrientDB and Titan, are sensitive to the JVM garbage
collection, especially for very large datasets that require
large amount of main-memory. As a general rule, the option
-XX:+UseG1GC for the Garbage First (G1) garbage collector
is strongly recommended.

6.1 Data Loading
The Task. For many systems, loading the data simply by
executing the Gremlin query 1 was causing system failures
or was taking days. For OrientDB and ArangoDB we are
forced to load the data using their native routines. With

Gremlin, ArangoDB sends each node and edge insertion in-
struction separately to the server via a HTTP call making
it prohibitively slow even for small datasets. For OrientDB,
limited edge-label storing features and long loading times re-
quired us to pass through some server-side implementation-
specific commands in order to load the datasets. Blaze-
Graph required the explicit activation of the bulk loading
feature otherwise we were facing loading times in the order
of days. Titan, for any medium to large size dataset re-
quires disabling the automatic schema creation during load-
ing, otherwise its storage back-end (Cassandra) would get
swamped with extra consistency check operations. This
means that the complete schema of the graph should be
known to the system prior to the insertion of the data and
is immutable unless implementation specific directives are
issued to update it. Sqlg, instead, has a limit on the max-
imum length of labels (due to Postgresql). In the Gremlin
implementation in all other systems those operations are
transparent to the user. As a result, only Neo4J and Spark-
see managed the loading through the gremlin API with no
issues, and they did so in times comparable to those achieved
by the built-in scripts provided by ArangoDB. Consequently,
since (for the loading alone) the different systems did not go
through exactly the same procedures, discussions regarding
the loading times need to be taken with this information in
mind.

The time. For the Yeast , which is the smallest dataset,
loading times vary from a couple of seconds (with ArangoDB)
to a minute (with Titan (v.1.0)). With the Frb-S dataset,
loading times range from 16 seconds (with ArangoDB), 5
minutes (Titan and OrientDB), 16 minutes (BlazeGraph),
up to 42 minutes (Sqlg). Titan and OrientDB are the sec-
ond slowest, requiring around 5 minutes. Neo4J is usually
the second fastest in all loadings tasks being only ten sec-
onds slower than ArangoDB. This ranking stays similar with
MiCo and ldbc, with the only exception of Sqlg being much
more faster.

Using the Frb-O , Frb-M , Frb-L, we observed that load-
ing time increases proportionally to the number of elements
(nodes and edges) within each dataset. With the largest
dataset (Frb-L) ArangoDB has the fastest loading time (⇠19
min) and only Neo4J (v.3.0) is just few minutes slower, fol-
lowed by Neo4J (v.1.9) (⇠38 min), and Sparksee (⇠48 min).
OrientDB, instead, took almost 3 hours, while both versions
of Titan approximately 4.5 hours. BlazeGraph instead took
almost 4.45 hours to load Frb-M and around 4 days to load
Frb-L. These tests showed that BlazeGraph, Sqlg and Ori-
entDB, given they internal storage structure, are very sen-
sitive to the edge label cardinality.

The Space. We exploited the docker utilities to measure
the disk size occupied by the data in each system. The
results are illustrated in Figures 3(a) and 3(b). For each
system, we obtained the size of the docker image with the
system installed and its required libraries, then we measured
again the size of said image after the data loading step. The
difference gives a precise account of all files that the loading
phase has generated.

Loading Yeast , not reported in figure, leaves the image
size almost unchanged for both Neo4J (v.1.9) and Titan
(v.0.5), and only 10, 20, 30, 60 and 70MB are added for
Neo4J (v.3.0), Sparksee, Titan (v.1.0), Sqlg, and OrientDB,
respectively. Instead, ArangoDB generates almost 150MB of

12

Table 3: Dataset Characteristics
Connected
Component Degree

|V| |E| |L| # Maxim Density Modularity Avg Max �

Yeast 2.3K 7.1K 167 101 2.2K 1.34⇤10�3 3.66⇤10�2 6.1 66 11

MiCo 100K 1.1M 106 1.3K 93K 1.10⇤10�6 5.45⇤10�3 21.6 1.3K 23

Frb-O 1.9M 4.3M 424 133K 1.6M 1.19⇤10�6 9.82⇤10�1 4.3 92K 48

Frb-S 0.5M 0.3M 1814 0.16M 20K 1.20⇤10�6 9.91⇤10�1 1.3 13K 4

Frb-M 4M 3.1M 2912 1.1M 1.4M 1.94⇤10�7 7.97⇤10�1 1.5 139K 37

Frb-L 28.4M 31.2M 3821 2M 23M 3.87⇤10�8 2.12⇤10�1 2.2 1.4M 33

ldbc 184K 1.5M 15 1 184K 4.43⇤10�5 0 16.6 48K 10

512

1024

2048

4096

8192

16384

32768

65536

131072

Frb O Frb M Frb L Frb F
Items: 6.2M 7.1M 59.6M 380M

Sp
ac

e O
cc

up
an

cy
 (M

B)

Items Blaze Neo 3.0 Sparksee Neo 1.9 Orient Arango Tit. 0.5 Tit. 1.0 Pg JSON

0

20

40

60

80

100

120

I B I B I B I B I B I B I B
Orient Tit. 0.5 Tit. 1.0 Sparksee Pg Arango Blaze

T
im

eo
ut

s
DB Engine and Execution Method(b)(a) (c)

Frb L

Frb O

Frb M

Frb S

64

128

256

512

1024

Frb S LDBC MiCo
0.8M 0.95M 2.1M

Sp
ac

e O
cc

up
an

cy
 (M

B)

Raw Data

Figure 3: Space occupancy on disk required by the systems on the various datasets compared to the size of
the original Json file and number of elements in the dataset ((left) and (center)) and number of Time-Outs
for Isolation (I) and Batch (B) modes (right)

Table 4: Evaluation Summary
Task
Load N1 · N3 · S A · O · P T0 · T1 · B

Insertions S · O · N1 · A P · N3 · T0 · T1 B

Graph Statistics S · N3 N1 · O · P T0 · T1 · A · B
Search by Property P · N3 · N1 O S · T0 · T1 · A · B
Search by Label P · N3 · N1 O · S T0 · T1 · A · B
Search by Id S · N1 · O A · P · N3 ·T0 · T1 B

Updates S · A · O · N1 · P N3 · T0 · T1 B

Delete Node A · N1 S · O · T0 · T1 · N3 · P B

Other Deletions S · A · O · N1 · P T0 · T1 · N3 B

Direct Neighbors N1 · O · N1 A · S · T0 · T1 B · P
Node Edge-Labels N1 · O · N3 A · T0 · T1,S B · P
K-Degree Search N3 · N1 O · T0 · T1 A · B · P
Breadth-First Search N3 · O · N1 T0 · T1 A · S · B · P
Shortest Path N3 · N1 O · T0 A · T1 · S · B · P

SN Queries P · N3 O · N1 · S · T1 A · T0 · B
A=ArangoDB; B=BlazeGraph; N1=Neo4J (v.1.9); N3=Neo4J (v.3.0);

O=OrientDB; S = Sparksee; T0 =Titan (v.0.5); T1 =Titan (v.1.0); P=Sqlg

additional disk space, and BlazeGraph more than 830MB,
the latter due to the size of journal and automatic-indexing
that, when generated, are multiples of a fixed size.

With the Frb-O dataset, as Figure 3 illustrates, Sparksee,
OrientDB, Neo4J (v.1.9), and Titan (v.0.5) are all equally
compact, with a delta on the disk image size of about 1.2GB.
For Frb-M , though, Neo4J (v.1.9) and Titan (v.0.5) are
equally effective in disk size and a little better than the
others, requiring respectively 1.3GB and 1.5GB to store a
dataset of 816MB and 7.1 million elements.

Titan (v.1.0) has, on both medium size datasets (Frb-O

and Frb-M), the third worst performance (the worst be-
ing BlazeGraph and the second worst Sqlg), with three to
four times the space consumption of the original dataset in
plain text. Instead, for the Frb-L, Titan (v.1.0) scales the
best, compressing 6.4GB of raw data into 4.1GB, followed
by Titan (v.0.5) taking 5.1GB. The remaining databases are
almost equivalent, taking from 10 to 14GB. Exception is the
BlazeGraph, on all the datasets, requiring on average three
times the size of any other system. This shows that the
compression strategy of Titan is the most compact at larger
scales.

The comparison between the disk space required by the
systems to store Frb-S , MiCo and ldbc (Figure 3(b)) reveals
a peculiar behavior for Sparksee and OrientDB, where the
space occupied on disk is smaller for the two larger datasets.
As a matter of fact, the ldbc dataset stored as plain text file
occupies twice more space on disk than the Frb-S file, and
contains 2 hundred thousands more elements. Nonetheless
Sparksee requires for ldbc about 25% less space, and Ori-
entDB less than half the space occupied on disk by the cor-
responding image with Frb-S . MiCo has comparable size, in
plain text, to Frb-S , and contains twice the objects of Frb-
S , but still the respective docker images of OrientDB and
Sparksee for MiCo are almost half the size of their images
containing the Frb-S . These disproportions can be explained
by the fact that Frb-S contains almost ⇠2K different edge
labels, while MiCo 106, and ldbc only 15. Apparently these
systems store different data-structure for different edge la-

13

bels, causing a certain amount of overhead for datasets with
many such labels.

It is important to note here that we have tried also much
larger datasets, but we were not able to load them on a large
number of systems so we could not have comparison across
all the systems and we have not reported them.

6.2 Completion Rate
Since graph databases are often used for on-line applica-

tions, ensuring that queries terminate in a reasonable time
is important. We count the queries that could not complete
within 2 hours, in isolation or in batch mode, and illustrate
the results in Figure 3(c). Note that, if one instantiation of
one query fails to run within the alloted amount of time in
isolation, when executed in a batch it will cause the failure
of the entire batch as well.

Neo4J, in both version, is the only system which com-
pleted successfully all tests with all parameters on all datasets
(omitted in the figure). OrientDB is the second best, with
just few timeouts on the large Frb-L. BlazeGraph is at the
other end of the spectrum, collecting the highest number
of timeouts. It reaches the time limit even in some batch
executions on Yeast , and almost on all queries on Frb-L. In
general the most problematic queries are those that have to
scan or filter the entire graph, i.e., queries Q.9 and Q.10.
Some shortest-path searches, and some bread first traversal
with depth 3 or more in most databases reach the time-
out on Frb-O , Frb-M and Frb-L. Filtering of nodes based
on their degree (Q.28, Q.29, and Q.30) and the search for
nodes with at least one incoming edge (Q.31) are proved
to be extremely problematic almost for all databases apart
from Neo4J and Titan (v.1.0). In particular for Sparksee
these queries cause the system to exhaust the entire avail-
able RAM and swap space on all Freebase subsamples (this
has been linked to a known problem in the gremlin imple-
mentation). BlazeGraph fails also these last queries on all
the Freebase datasets, while ArangoDB fails it only on Frb-
M and Frb-L, and OrientDB instead only on Frb-L.

6.3 Insertions, Updates and Deletions
For operations that add new objects (nodes, edges, or

properties), tests show extremely fast performances for Spark-
see, Neo4J (v.1.9), and ArangoDB, with times below 100ms,
with Sparksee being generally the fastest (Figure 4(a)). More-
over, with the only exception of BlazeGraph, all databases
are almost unaffected by the size of the dataset. We at-
tribute this to the use of write-ahead logs, and the internal
configuration of the adopted data-structures. BlazeGraph
is instead the slowest with times between 10 seconds and
more than a minute. Both versions of Titan are the sec-
ond slowest with times around 7 seconds for insertion of
nodes, and 3 seconds for insertion of edges or properties,
while for the insertion of a node with all the edges (Q.7)
it takes more than 30 seconds. Sparksee, ArangoDB, Ori-
entDB, Sqlg, and Neo4J (v.1.9) complete the task in less
than a second. OrientDB is among the fastest for insertions
of nodes (Q.2) and properties on both nodes and edges (Q.5
and Q.6), but is much slower, with inconsistent behavior, for
insertion of edges. Neo4J (v.3.0), is more than an order of
magnitude slower than its previous version, with a fluctuat-
ing behavior that does not depend on the size of the dataset.

Sqlg is among the fastest for insertions of nodes, and nodes
alongside edges, while is much slower for all other queries.
Similar results are obtained for the update of properties on
both nodes and edges (Q.16, and Q.17), and for the deletion
of properties on edges (Q.21).

The performance of node removal (Q.18) for OrientDB,
Sqlg, and Sparksee seems highly affected by the structure
and size of the graphs (Figure 4(b)). On the other hand,
ArangoDB and Neo4J (v.1.9) remain almost constantly be-
low the 100ms threshold, while Neo4J (v.3.0) completes all
the deletions between 0.5 and 2 seconds. Finally, for the
removal of nodes, edges, and node properties, Titan shows
almost one order of magnitude improvement.

For creations, updates and deletions, as a whole, the fastest
are Neo4J (v.1.9), with constant times below 100ms, and
then Sparksee, but with quite a scale-sensitive behavior for
edge-deletion, that is shared with OrientDB. ArangoDB is
also consistently among the fastest, but its interaction through
REST calls, and the fact that it does not support transac-
tions, constitutes a bias on those results in its favor since
the time is measured on the client side.

6.4 General Selections
With read queries, some heterogeneous behaviors start to

show up. The search by ID (Figure 5(b)) differs significantly
from all other queries in this class. BlazeGraph is again
the slowest, with performances around 500ms for the search
of nodes, and instead 4 seconds or more for the search of
edges. All other systems take less than 400ms to satisfy
both queries, with Titan the slowest among them. Here
Sparksee, OrientDB and Neo4J (v.1.9) return in about 10ms,
hinting to the fact that, given the ID, they are able to jump
immediately to the right position on disk where to find it.

In counting nodes and edges (Q.8, and Q.9), Sparksee
has the best performance followed by Neo4J (v.3.0). As a
matter of fact Sparksee and Neo4J (v.3.0) complete the two
tasks in less than 10 seconds on all sizes of Freebase, while
Neo4J (v.1.9) take more than an minute on the Frb-L. For
BlazeGraph and ArangoDB, node counting is one of the few
queries in this category that complete before timeout. In
particular in Q.8 BlazeGraph is faster than ArangoDB, but
then it hits the time limit for Q.9 on all Freebase subsam-
ples, while ArangoDB, at least for Frb-S it’s able to get the
answer in time also on the other queries. Edge iteration,
on the other hand, seems hard for ArangoDB that rarely
completes within 2 hours for the Freebase datasets.

Computing the set of unique labels (Q.10) changes a little
the ranking. Here, the two versions of Neo4J are the fastest
databases, while Sparksee gets a little slower. The search for
nodes (Q.11) and edges (Q.12) based on property values per-
forms similar to the search for edges based on labels (Q.13),
for almost all databases. These 3 are some of the few queries
where the RDBMS-backed Sqlg works best, with results an
order of magnitude faster than the competition. Among the
others, Neo4J (v.3.0) gives the shortest time, with the Q.13
performing slightly faster than the others, getting an an-
swer in a little more than 10 seconds on the larger dataset,
while Neo4J (v.1.9), Sparksee, and OrientDB are at least
one order of magnitude slower. Only for Sparksee we notice
relevant differences between Q.12 and Q.13. Hence, equality
search on edge labels is not really optimized in the various
systems.

14

1

10

100

1.000

10.000

100.000

Fb
r-S

Fb
r-O

Fb
r-M

Fb
r-L

Fb
r-F

Fb
r-S

Fb
r-O

Fb
r-M

Fb
r-L

Fb
r-F

Fb
r-S

Fb
r-O

Fb
r-M

Fb
r-L

Fb
r-F

Fb
r-S

Fb
r-O

Fb
r-M

Fb
r-L

Fb
r-F

Fb
r-S

Fb
r-O

Fb
r-M

Fb
r-L

Fb
r-F

Fb
r-S

Fb
r-O

Fb
r-M

Fb
r-L

Fb
r-F

Q2 Q3 Q4 Q5 Q6 Q7

Ti
m

e
(m

s)

Neo 1.9 Neo 3.0 Orient Tit. 0.5 Tit. 1.0 Sparksee Blaze Arango Sqlg

1

10

100

1.000

10.000

100.000

Fb
r-S

Fb
r-O

Fb
r-M

Fb
r-L

Fb
r-F

Fb
r-S

Fb
r-O

Fb
r-M

Fb
r-L

Fb
r-F

Fb
r-S

Fb
r-O

Fb
r-M

Fb
r-L

Fb
r-F

Fb
r-S

Fb
r-O

Fb
r-M

Fb
r-L

Fb
r-F

Fb
r-S

Fb
r-O

Fb
r-M

Fb
r-L

Fb
r-F

Fb
r-S

Fb
r-O

Fb
r-M

Fb
r-L

Fb
r-F

Q16 Q17 Q18 Q19 Q20 Q21

Ti
m

e
(m

s)

(b)(a)

1 sec
1 min

1sec
1min

100 ms
10 ms

100 ms
10 ms

Figure 4: Time required for (a) insertions and (b) updates and deletions.

1

10

100

1.000

10.000

100.000

Fb
r-S

Fb
r-O

Fb
r-M

Fb
r-L

Fb
r-F

Fb
r-S

Fb
r-O

Fb
r-M

Fb
r-L

Fb
r-F

Q14 Q15
Ti

m
e

(m
s)

Neo 1.9 Neo 3.0 Orient Tit. 0.5 Tit. 1.0 Sparksee Blaze Arango Sqlg

10

100

1.000

10.000

100.000

1.000.000

10.000.000

Fb
r-S

Fb
r-O

Fb
r-M

Fb
r-L

Fb
r-F

Fb
r-S

Fb
r-O

Fb
r-M

Fb
r-L

Fb
r-F

Fb
r-S

Fb
r-O

Fb
r-M

Fb
r-L

Fb
r-F

Fb
r-S

Fb
r-O

Fb
r-M

Fb
r-L

Fb
r-F

Fb
r-S

Fb
r-O

Fb
r-M

Fb
r-L

Fb
r-F

Fb
r-S

Fb
r-O

Fb
r-M

Fb
r-L

Fb
r-F

Q8 Q9 Q10 Q11 Q12 Q13

Ti
m

e
(m

s)

(b)(a)

1sec
1min

1hour

1 sec
10 sec

100ms

Figure 5: Selection Queries: The Id-based (right) perform orders of magnitude better than the rest (left)

10

100

1.000

10.000

Fb
r-S

Fb
r-O

Fb
r-M

Fb
r-L

Fb
r-F

Fb
r-S

Fb
r-O

Fb
r-M

Fb
r-L

Fb
r-F

Fb
r-S

Fb
r-O

Fb
r-M

Fb
r-L

Fb
r-F

Fb
r-S

Fb
r-O

Fb
r-M

Fb
r-L

Fb
r-F

Fb
r-S

Fb
r-O

Fb
r-M

Fb
r-L

Fb
r-F

Fb
r-S

Fb
r-O

Fb
r-M

Fb
r-L

Fb
r-F

Q22 Q23 Q24 Q25 Q26 Q27

Ti
m

e (
m

s)

Neo 1.9 Neo 3.0 Orient Tit. 0.5 Tit. 1.0 Sparksee Blaze Arango Sqlg

1.000

10.000

100.000

1.000.000

Fb
r-S

Fb
r-O

Fb
r-M

Fb
r-L

Fb
r-F

Fb
r-S

Fb
r-O

Fb
r-M

Fb
r-L

Fb
r-F

Fb
r-S

Fb
r-O

Fb
r-M

Fb
r-L

Fb
r-F

Fb
r-S

Fb
r-O

Fb
r-M

Fb
r-L

Fb
r-F

Q28 Q29 Q30 Q31

Ti
m

e (
m

s)

(b)(a)

1sec

1 sec
1 min

1 hour

10 sec

Figure 6: Time required for traversal operations: (a) local access to node edges, and (b) filtering on all nodes

6.5 Traversals
As mentioned above, the most important class of queries

that GDBs are called to satisfy regards the traversal of
graph structures. In the performance of traversal queries
that access the direct neighborhood of a specific node (Q.22
to Q.27), we observe (Figure 6(a)) that OrientDB, Neo4J
(v.1.9), ArangoDB, and then Neo4J (v.3.0) are the fastest,
with response times below the 60ms, and being robust to
the size and structure of the dataset. Sparksee seems to
be more sensitive to the structure and size of the graph,
requiring around 150ms on Frb-L. The only exception for
Sparksee is when performing a visit of the direct neighbor-
hood of a node filtered by the edge labels, in which case

it is on par with the former systems. BlazeGraph is again
an order of magnitude slower (⇠600ms) preceded by Titan
(⇠160ms). We notice also that Sqlg is the slowest engine for
these queries, unless a filter is posed on the label to traverse,
in which case Sqlg becomes much faster.

When comparing the performance of queries Q.28 to Q.31
that traverse the entire graph filtering nodes based on the
edges around them, as shown in Figure 6(b), the clear win-
ner is Neo4J (v.3.0), with its older version being the second
fastest. Those two are also the only two engines that com-
plete the query on all datasets. In particular Neo4J (v.3.0)
completed each query on Frb-L in less than two minutes on
average, while Neo4J (v.1.9) took at lest 10 minutes for the

15

100

1.000

10.000

100.000

1.000.000

Fb
r-S

Fb
r-O

Fb
r-M

Fb
r-L

Fb
r-F

Fb
r-S

Fb
r-O

Fb
r-M

Fb
r-L

Fb
r-F

Fb
r-S

Fb
r-O

Fb
r-M

Fb
r-L

Fb
r-F

Q32 (depth 3) Q32 (depth 4) Q32 (depth 5)

Tim
e

(m
s)

Neo 1.9 Neo 3.0 Orient Tit. 0.5 Tit. 1.0 Sparksee Blaze Arango Sqlg

100

1.000

10.000

100.000

1.000.000

Fb
r-S

Fb
r-O

Fb
r-M

Fb
r-L

Fb
r-F

Q32 (depth 2)

Tim
e

(m
s)

(b)(a)

1 sec
1 min

1sec
1min

1hour

Figure 7: Time required for breadth-first traversal (a) at depth= 2, and (b) at depth>= 3

100

1.000

10.000

100.000

1.000.000

Frb-S Frb-O Frb-M Frb-L

Ti
m

e (
S)

Neo4j 1.9 Neo4j 3.0 Orient Titan 1.0 Titan 0.5 Sparksee Blazegraph Arangodb Pg

100

1.000

10.000

100.000

1.000.000

10.000.000

Q33: depth 2 depth 3 depth 4 depth 5 Q35

Ti
m

e (
m

s)

ldbc

100

1.000

10.000

100.000

1.000.000

10.000.000

Fbr-S Fbr-O Fbr-M Fbr-L
Q34

Ti
m

e (
m

s)

(b)(a) (c)

1sec
1min

1hour

1 sec
1 min

1 hour

1 hour
1 day

1 week

Figure 8: Performance of (a) Shortest Path, (b) label-constrained BFS and Shortest Path, and (c) Overall

same dataset. All tested systems are obviously affected by
the number of nodes and edges to inspect. Sparksee is un-
able to complete any of these queries on Freebase due to
the exhaustion of the available memory, indicating probably
a problem in the implementation, as this never happens in
any other case. BlazeGraph as well hits the timeout limit
on all samples, while ArangoDB is able to complete only on
Frb-S and Frb-O . Finally Sqlg is able to complete only Q.31,
although with time comparable to Neo4J (v.1.9). Neverthe-
less, all systems complete the task on Yeast , ldbc and MiCo.

We study breadth-first searches (Q.32 and Q.33) and short-
est path searches (Q.34 and Q.35) separately from the other
traversal operations. The performance of the unlabeled ver-
sion of breadth-first-search, shown in Figure 7, highlights
once more the good scalability of both versions of Neo4J at
all depths. Although Neo4J (v.3.0) is the only system to
complete the task before timeout even on the Frb-F . Ori-
entDB and Titan give the second fastest times for depth 2,
with times 50% slower than those of Neo4J. For depth 3 and
higher, as Figure 7(b) illustrates, OrientDB is a little faster
than Titan. On the other hand, in these queries we observe
that Sqlg and Sparksee are actually the slowest engines, even
slower than BlazeGraph. For query Q.34 in Figure 8(a),
which is the shortest path with no label constraint, the per-
formance of the system is similar to the above, BlazeGraph
and Sparksee are in this case very similar, and Sqlg still the
slowest.

The label-filtered version of both the breadth first search
and the shortest path query on the Freebase samples (not

shown in a figure) were extremely fast for all datasets be-
cause the filter on edge labels cause the exploration to stop
almost immediately. Running the same queries on ldbc we
still observe (Figure 8(b)) that Neo4J is the fastest engine,
but also Sparksee is the second fastest in par with OrientDB
for the breadth-first search, while on the shortest path search
filtered on labels, Titan (v.1.0) gets the second place.

6.6 Effect of Indexing.
We built node-attribute indexes on the graphs in the vari-

ous systems to evaluate the effect of indexing on the system
performance (Figure 9, and 10). BlazeGraph has been ex-
cluded since it does not allow any custom index (and the
system already builds its own). ArangoDB showed no dif-
ference in running times, so we suspect some defect in the
gremlin implementation. For insertions, updates, and dele-
tions, we noticed longer running times, as expected since
the indexes had to be updated, but was no more than 10%
in most cases. The only exception to this trend are Neo4J
(v.3.0) and OrientDB, with delays of about 30% and 100%
respectively. Despite the increase in time, Neo4J (v.1.9),
Sparksee, and OrientDB remained the fastest systems for
CUD operation. For search queries (Q.11), the presence of
indexes gave to Neo4J (v.1.9), OrientDB, Titan (v.0.5), and
Titan (v.1.0) an improvement of 2 to 5 orders of magnitude
(depending on the dataset size), while Sqlg witnessed up to
a 600x speed up. Sparksee and Neo4J (v.3.0) instead were
not able to take advantage of the indexes. As a matter of
fact, both system support labels not only for edges but also

16

for nodes. For this reason, for both systems, indexes are tied
to a specific node label, and hence only queries specifying
a selection on a node label can then exploit the index for
the attribute. This means that indexes play a significant
role in most of the systems, and are taken seriously into
consideration in query execution.

6.7 Complex Queries.
The complex queries were executed in the presence of in-

dexes in the various systems. Figure 11 illustrates their per-
formance. ArangoDB and Titan (v.0.5) were the slowest,
while BlazeGraph didn’t manage to complete the workload
since the initial queries timed out. Most likely all these three
systems have a focus only on primitive operators. Titan
(v.1.0), despite being among the slowest for most queries,
resulted by far the fastest for the portion of operations that
required a short-distance traversal restricted on a single spe-
cific label. Suggesting this newer version has some optimiza-
tion functionality indicating that its developers are heading
towards that direction. Neo4J (v.3.0) is very fast (possibly
as a result of being fast in primitive operations execution).
Yet, it is not as good as Sqlg. Sqlg seems to be taking ad-
vantage of the relational optimizer in pushing down selection
predicates or exploiting indexes, which in combination with
the fact that the queries can be easily translated to condi-
tional join queries, with no recursion and short join chains,
make it the fastest system.

6.8 Single vs Batch Execution.
We looked at the times differences between single execu-

tions (run in isolation) and batch. We report times for each
batch execution for Frb-S , Frb-O , Frb-M , and Frb-L in Fig-
ures 12, 13, 14, and 15. Running the queries in batch mode
does not create any major changes in the way the systems
compare to each other. For the retrieval queries, the batch
requests of the 10 queries were taking exactly 10 times the
time of one iteration, i.e., no benefit obtained from the batch
execution. Exception is for queries 14 and 15 (Figure 13 b),
here times to retrieve 10 nodes by their internal IDs are al-
most exactly the same as for retrieving one single node (see
Figure 5 above). Such behavior suggests that the systems
load the data into main memory at the first call, and then
retrieves everything from there.

Instead, for the create, update and delete operations, the
batch is less than 10 times the time needed for one iteration,
meaning that in single mode most of the time we measure is
some initiation set-up time for the operation. For traversal
queries the batch executions only stressed the differences
between faster and slower databases.

6.9 Yeast, MiCo, and ldbc
In the following we report on the results of the tests per-

formed on the Yeast , MiCo, and ldbc datasets, which are
generally smaller than the Freebase samples, and also have
a much smaller number of edge labels. Results for queries
in isolation mode are reported in Figure 16, 18, 20, and 22,
while results for the batch mode execution are in Figure 17, 19,
21, and 23. Experiments on these datasets, as noted above,
show again similar relative performances compared to the
results on the Freebase samples described earlier. In gen-
eral we see Sparksee performing among the fastest databases
more often. ArangoDB’s performance as well is much more
similar to the other systems. BlazeGraph instead is usually

the slowest also on those datasets. As a matter of fact, even
in tests with Yeast , BlazeGraph is not always able to termi-
nate queries within the timeout limit, which indicates some
serious implementation problems for some of the selection
queries (Figure 18).

6.10 Overall Evaluation and Insights
To sum up the evaluation we can compare the cumula-

tive time taken by each system to complete the entire set
of queries in both single and batch executions (Figure 8(c)).
Overall Neo4J is the fastest engine. An important change
that took place between the old implementation and the new
for the gremlin API, is due to a different licensing for Tin-
kerpop. In particular Neo4j is distributed under the GPL
V3 license6, while Tinkerpop is now distributed under the
Apache licence7. This forced the developers of Neo4j to add
an additional indirection layer on top of their library, the
effect of which is evident for very fast operations (e.g., C,
U, D). Nonetheless, on the most time-consuming queries
for class R and T Neo4J (v.3.0) is usually the fastest, and
Neo4J (v.1.9) the runner-up. Pretty good running times
have also been recorded for OrientDB, which is often on
par with Neo4J, and in cases is better than one of its two
versions. It does not, however, do well in cases where large
portions of the graph have to be processed and kept in mem-
ory, e.g., with Frb-L. Titan results quite often one order of
magnitude slower than the best engine. It shows difficul-
ties in create and update operations, however, it is much
better in deletions, most likely due to the tombstone mech-
anism, where it marks an item as removed instead of actu-
ally removing it. Nonetheless, this method seems to result
slower than the write ahead log (WAL) adopted by the oth-
ers. Sparksee gives almost consistently the best times in the
operations for creating, updating, and deleting objects. Al-
though it is not very fast with deletions of nodes having a
lot of edges, it is still better than others. It also performs
best in edge and node counts, as well as in retrieval of nodes
and edges by ID, thanks to its internal compressed data-
structures. Nevertheless, it performs worse than others for
the other retrieval queries and is the worst in most traver-
sals, showing good performances only when a filter on edge
labels was applied. Finally, it gives a lot of timeouts on the
degree-based node search queries. ArangoDB excels only
in few queries. For creation, updates and deletes, it ranks
among the best. For retrievals, its performance is in general
poor, except when searching by ID, while for traversals it
has a narrow lead over Sparksee and BlazeGraph. This is
due to the way Gremlin primitives are translated into the
engine, where it has to materialize all objects in order to
iterate through them.

Sqlg shows the expected low performance for all the traver-
sal operations due to the need to traverse the graph via
relational joins instead of direct links to node/edges. For
queries containing 1 or 2 hop traversal restricted to a single
edge-label, however, it performs extremely well, since joins
are limited to a single table containing only the necessary
edges. BlazeGraph results also in a generally poor perfor-
mance. The indexes it builds automatically do not seem to
help much, and most likely is optimized for SPARQL queries
only and not for a generic graph management. This is prob-
ably due to its internal structure, since in RDF attributes
6
www.gnu.org/licenses/quick-guide-gplv3.html

7
www.apache.org/licenses/GPL-compatibility.html

17

www.gnu.org/licenses/quick-guide-gplv3.html
www.apache.org/licenses/GPL-compatibility.html

1

10

100

1.000

10.000

Fb
r-S

Fb
r-O

Fb
r-M

Fb
r-L

Fb
r-S

Fb
r-O

Fb
r-M

Fb
r-L

Fb
r-S

Fb
r-O

Fb
r-M

Fb
r-L

Fb
r-S

Fb
r-O

Fb
r-M

Fb
r-L

Fb
r-S

Fb
r-O

Fb
r-M

Fb
r-L

Q2 Q5 Q16 Q18 Q20

Tim
e

(m
s)

Blaze Tit. 0.5 Tit. 1.0 Neo 3.0 Arango Neo 1.9 Orient Sparksee Sqlg

10

100

1.000

10.000

100.000

1.000.000

Fb
r-S

Fb
r-O

Fb
r-M

Fb
r-L

Q11

Tim
e

(m
s)

(b)(a)

Figure 9: Effect of indexing on the Time required for Q.2, Q.5, Q.16, Q.18, Q.20, and Q.11

1

10

100

1.000

10.000

100.000

Fb
r-S

Fb
r-O

Fb
r-M

Fb
r-L

Fb
r-S

Fb
r-O

Fb
r-M

Fb
r-L

Fb
r-S

Fb
r-O

Fb
r-M

Fb
r-L

Fb
r-S

Fb
r-O

Fb
r-M

Fb
r-L

Fb
r-S

Fb
r-O

Fb
r-M

Fb
r-L

Q2 Q5 Q16 Q18 Q20

Ti
m

e
(m

s)

Batch Execution

Neo 1.9 Neo 3.0 Orient Tit. 0.5 Tit. 1.0 Sparksee Blaze Arango Sqlg

10

100

1.000

10.000

100.000

1.000.000

Fb
r-S

Fb
r-O

Fb
r-M

Fb
r-L

Q11

Ti
m

e
(m

s)

Batch Execution(b)(a)

Figure 10: Effect of indexing on the Time required in Batch Mode for Q.2, Q.5, Q.16, Q.18, Q.20, and Q.11

10

100

1.000

10.000

m
ax

-iid

m
ax

-o
id

cr
ea

te cit
y

co
m

pa
ny

un
ive

rs
ity

fri
en

d1

fri
en

d2

fri
en

d-
ta

gs

ad
d-

ta
gs

fri
en

d-
of

-
fri

en
d

tri
an

gle

Tim
e

(m
s)

Neo 1.9 Neo 3.0 Orient Tit. 0.5 Tit. 1.0 Sparksee Arango Sqlg

Figure 11: Complex Query Performance

are generic triples, similar to predicates, so it is possible
that it is iterating over the whole dataset. A summary of
the ranking for each query type is presented in Table 4.

Although we considered all the queries equally important,
for different applications some may be playing a more im-
portant role. We have identified three main uses of graph
databases: interactive, exploratory and business analytics.
The weight of each query for each such use, as produced in
collaboration with some system developers, can be found in
Table 5 and can be used to determine which weight each
query performance should have for specific workloads.

The experiments have also shown that hybrid and na-
tive systems perform differently. Native are the systems
built from top to bottom for graph data, e.g, the Neo4J,

OrientDB, and Sparksee. Hybrid are those based on other
type of systems to offer graph data functionality. Exam-
ples of the latter include ArangoDB, which is based on a
document-store, Sqlg, which is backed by a RDBMS, Ti-
tan, which relies on a column-store, and BlazeGraph which
is built on top of an RDF engine. For a limited set of use
cases hybrid systems perform equally well with the native,
but for more advanced queries, like finding connectivity be-
tween two nodes, unbounded traversal and enumeration of
structures, the hybrid systems under-perform significantly.

Regarding the query language, Gremlin is the one sup-
ported by all the systems. Nevertheless, each system offers
its own native query language and performs all the opti-
mizations on it. Gremlin queries have to be translated to
the native primitives, loosing this way many of the possi-
ble optimizations. Gremlin may be used as a standard, but
is not the first priority of the systems. The fact that data
loading was not possible through gremlin but through na-
tive calls, is another indication of this. Therefore, this gap
needs to be bridged, for instance, by means of a syntactic
translation from gremlin syntax to the various declarative
languages. Otherwise, an effort to standardize a declarative
language for graph traversal could be more effective.

By comparing the methodologies of the micro and macro-
benchmarking, it became clear the importance of studying
individual operators in a context-agnostic way. The micro-
benchmark evaluation has pointed out many specific prob-
lems that could successfully be communicated to the ven-

18

1

10

100

1.000

10.000

100.000

Fb
r-S

Fb
r-O

Fb
r-M

Fb
r-L

Fb
r-F

Fb
r-S

Fb
r-O

Fb
r-M

Fb
r-L

Fb
r-F

Fb
r-S

Fb
r-O

Fb
r-M

Fb
r-L

Fb
r-F

Fb
r-S

Fb
r-O

Fb
r-M

Fb
r-L

Fb
r-F

Fb
r-S

Fb
r-O

Fb
r-M

Fb
r-L

Fb
r-F

Fb
r-S

Fb
r-O

Fb
r-M

Fb
r-L

Fb
r-F

Q2 Q3 Q4 Q5 Q6 Q7

Ti
m

e
(m

s)

Batch Execution

Neo 1.9 Neo 3.0 Orient Tit. 0.5 Tit. 1.0 Sparksee Blaze Arango Sqlg

1

10

100

1.000

10.000

100.000

Fb
r-S

Fb
r-O

Fb
r-M

Fb
r-L

Fb
r-F

Fb
r-S

Fb
r-O

Fb
r-M

Fb
r-L

Fb
r-F

Fb
r-S

Fb
r-O

Fb
r-M

Fb
r-L

Fb
r-F

Fb
r-S

Fb
r-O

Fb
r-M

Fb
r-L

Fb
r-F

Fb
r-S

Fb
r-O

Fb
r-M

Fb
r-L

Fb
r-F

Fb
r-S

Fb
r-O

Fb
r-M

Fb
r-L

Fb
r-F

Q16 Q17 Q18 Q19 Q20 Q21

Ti
m

e
(m

s)

Batch Execution(b)(a)

Figure 12: Time required in Batch Mode for (a) insertions and (b) updates and deletions.

10

100

1.000

10.000

100.000

1.000.000

10.000.000

Fb
r-S

Fb
r-O

Fb
r-M

Fb
r-L

Fb
r-F

Fb
r-S

Fb
r-O

Fb
r-M

Fb
r-L

Fb
r-F

Fb
r-S

Fb
r-O

Fb
r-M

Fb
r-L

Fb
r-F

Q11 Q12 Q13

Ti
m

e
(m

s)

Batch Execution

Neo 1.9 Neo 3.0 Orient Tit. 0.5 Tit. 1.0 Sparksee Blaze Arango Sqlg

1

10

100

1.000

10.000

100.000

Fb
r-S

Fb
r-O

Fb
r-M

Fb
r-L

Fb
r-F

Fb
r-S

Fb
r-O

Fb
r-M

Fb
r-L

Fb
r-F

Q14 Q15

Ti
m

e
(m

s)

Batch Execution(b)(a)

Figure 13: Selection Queries in Batch Mode: The Id-based (right) perform orders of magnitude better than
the rest (left), and compared to the isolation mode they take the same amount of time

10

100

1.000

10.000

100.000

Fb
r-S

Fb
r-O

Fb
r-M

Fb
r-L

Fb
r-F

Fb
r-S

Fb
r-O

Fb
r-M

Fb
r-L

Fb
r-F

Fb
r-S

Fb
r-O

Fb
r-M

Fb
r-L

Fb
r-F

Fb
r-S

Fb
r-O

Fb
r-M

Fb
r-L

Fb
r-F

Fb
r-S

Fb
r-O

Fb
r-M

Fb
r-L

Fb
r-F

Fb
r-S

Fb
r-O

Fb
r-M

Fb
r-L

Fb
r-F

Q22 Q23 Q24 Q25 Q26 Q27

Ti
m

e
(m

s)

Batch Execution

Neo 1.9 Neo 3.0 Orient Tit. 0.5 Tit. 1.0 Sparksee Blaze Arango Sqlg

(b)(a)

1.000

10.000

100.000

1.000.000

Fb
r-S

Fb
r-O

Fb
r-M

Fb
r-L

Fb
r-F

Q34

Ti
m

e
(m

s)

Batch Execution

Figure 14: Time required for traversal operations in Batch Mode: (a) local access to node edges, and (b) for
shortest path search

dors, while with the macro-benchmarking a deeper analysis
had to be performed.

7. EXPERIENCES
In general our experiences cover a large spectrum of issues,

technical challenges that we faced, and areas of improvement
that are related to the usability of the various systems.

Installation, Configuration, Documentation and Sup-
port. First we stress that the only 2 systems that we were
able to install and run as expected were Neo4J and Sparksee.

For those, after downloading the relevant binaries and fol-
lowing the instructions provided on the respective websites,
we were almost immediately able to load our datasets, at all
sizes, and run some queries. For the others, as mentioned
earlier (and below) we had to overcome some difficulties in
importing the datasets, configuring the systems properly,
and understanding the errors raised when running some of
the queries. As a result, for those system that are open-
source and hosted on a public repository, we reported those
problems and bugs found as issues. In total we issued 8 sup-
port request (comprising bug issues) for ArangoDB, 4 for

19

100

1.000

10.000

100.000

1.000.000

Fb
r-S

Fb
r-O

Fb
r-M

Fb
r-L

Fb
r-F

Fb
r-S

Fb
r-O

Fb
r-M

Fb
r-L

Fb
r-F

Fb
r-S

Fb
r-O

Fb
r-M

Fb
r-L

Fb
r-F

Q32(depth 3) Q32 (depth 4) Q32 (depth 5)

Ti
m

e
(m

s)

Batch Execution

Neo 1.9 Neo 3.0 Orient Tit. 0.5 Tit. 1.0 Sparksee Blaze Arango Sqlg

(b)(a)

100

1.000

10.000

100.000

1.000.000

Fb
r-S

Fb
r-O

Fb
r-M

Fb
r-L

Fb
r-F

Q32 (depth 2)

Ti
m

e
(m

s)

Batch Execution

Figure 15: Time required for breadth-first traversal in batch mode (a) at depth= 2, and (b) at depth>= 3

1

10

100

1.000

10.000

100.000

Ye
as

t

M
iC

o

LD
BC

Ye
as

t

M
iC

o

LD
BC

Ye
as

t

M
iC

o

LD
BC

Ye
as

t

M
iC

o

LD
BC

Ye
as

t

M
iC

o

LD
BC

Ye
as

t

M
iC

o

LD
BC

Q2 Q3 Q4 Q5 Q6 Q7

Tim
e

(m
s)

Neo 1.9 Neo 3.0 Orient Tit. 0.5 Tit. 1.0 Sparksee Blaze Arango Sqlg

1

10

100

1.000

10.000

100.000

Ye
as

t

M
iC

o

LD
BC

Ye
as

t

M
iC

o

LD
BC

Ye
as

t

M
iC

o

LD
BC

Ye
as

t

M
iC

o

LD
BC

Ye
as

t

M
iC

o

LD
BC

Ye
as

t

M
iC

o

LD
BC

Q16 Q17 Q18 Q19 Q20 Q21

Tim
e

(m
s)

(b)(a)

Figure 16: Time required on Yeast, ldbc, and MiCo for (a) insertions and (b) updates and deletions in
isolation mode.

1

10

100

1.000

10.000

100.000

1.000.000

Ye
as

t

M
iC

o

LD
BC

Ye
as

t

M
iC

o

LD
BC

Ye
as

t

M
iC

o

LD
BC

Ye
as

t

M
iC

o

LD
BC

Ye
as

t

M
iC

o

LD
BC

Ye
as

t

M
iC

o

LD
BC

Q2 Q3 Q4 Q5 Q6 Q7

Ti
m

e
(m

s)

Batch Execution

Neo 1.9 Neo 3.0 Orient Tit. 0.5 Tit. 1.0 Sparksee Blaze Arango Sqlg

1

10

100

1.000

10.000

100.000

Ye
as

t

M
iC

o

LD
BC

Ye
as

t

M
iC

o

LD
BC

Ye
as

t

M
iC

o

LD
BC

Ye
as

t

M
iC

o

LD
BC

Ye
as

t

M
iC

o

LD
BC

Ye
as

t

M
iC

o

LD
BC

Q16 Q17 Q18 Q19 Q20 Q21

Ti
m

e
(m

s)

Batch Execution(b)(a)

Figure 17: Time required for (a) insertions and (b) updates and deletions in batch mode for Yeast, ldbc, and
MiCo.

OrientDB, 2 for Titan, 2 for Sqlg, and 1 for BlazeGraph.
For ArangoDB and OrientDB some of those bugs have

been fixed in official releases of the software or have been
included in the development road-map. Instead those re-
garding Titan and BlazeGraph didn’t receive any reply from
the developers (in many months) and, where possible, were
either fixed or circumvented in our local installs. This also
describes the level of support received by the respective de-
velopment teams.

Regarding the documentation, we note that Neo4J, Sqlg

and OrientDB are provided with pretty in-depth informa-
tions for developers. Sparksee, Titan and ArangoDB have
some documentation, limited in some aspects, but still clear
for basic installation, configurations and operational needs.
Among those Titan manual contains a lot of confusion among
the various existing software versions, and in some cases,
the provided instructions and example-code are not actually
self-contained. Also, given the reliance on Cassandra for the
storage, it is to note the reduced amount of information on
how to properly configure this system and how to tackle the

20

10

100

1.000

10.000

100.000

1.000.000

Ye
as

t

M
iC

o

LD
BC

Ye
as

t

M
iC

o

LD
BC

Ye
as

t

M
iC

o

LD
BC

Ye
as

t

M
iC

o

LD
BC

Ye
as

t

M
iC

o

LD
BC

Ye
as

t

M
iC

o

LD
BC

Q8 Q9 Q10 Q11 Q12 Q13

Tim
e

(m
s)

Neo 1.9 Neo 3.0 Orient Tit. 0.5 Tit. 1.0 Sparksee Blaze Arango Sqlg

1

10

100

1.000

10.000

Ye
as

t

M
iC

o

LD
BC

Ye
as

t

M
iC

o

LD
BC

Q14 Q15

Tim
e

(m
s)

(b)(a)

Figure 18: Selection Queries in isolation mode for Yeast, ldbc, and MiCo: The Id-based (right) perform
orders of magnitude better than the rest (left)

10

100

1.000

10.000

100.000

1.000.000

Ye
as

t

M
iC

o

LD
BC

Ye
as

t

M
iC

o

LD
BC

Ye
as

t

M
iC

o

LD
BC

Q11 Q12 Q13

Ti
m

e
(m

s)

Batch Execution

Neo 1.9 Neo 3.0 Orient Tit. 0.5 Tit. 1.0 Sparksee Blaze Arango Sqlg

1

10

100

1.000

10.000

Ye
as

t

M
iC

o

LD
BC

Ye
as

t

M
iC

o

LD
BC

Q14 Q15

Ti
m

e
(m

s)

Batch Execution(b)(a)

Figure 19: Selection Queries in Batch Mode for Yeast, ldbc, and MiCo: The Id-based (right) perform orders
of magnitude better than the rest (left), and compared to the isolation mode they take the same amount of
time

100

1.000

10.000

100.000

1.000.000

Ye
as

t

M
iC

o

LD
BC

Ye
as

t

M
iC

o

LD
BC

Ye
as

t

M
iC

o

LD
BC

Ye
as

t

M
iC

o

LD
BC

Q28 Q29 Q30 Q31

Tim
e

(m
s)

10

100

1.000

Ye
as

t

M
iC

o

LD
BC

Ye
as

t

M
iC

o

LD
BC

Ye
as

t

M
iC

o

LD
BC

Ye
as

t

M
iC

o

LD
BC

Ye
as

t

M
iC

o

LD
BC

Ye
as

t

M
iC

o

LD
BC

Q22 Q23 Q24 Q25 Q26 Q27

Tim
e

(m
s)

Neo 1.9 Neo 3.0 Orient Tit. 0.5 Tit. 1.0 Sparksee Blaze Arango Sqlg

(b)(a)

Figure 20: Time required for traversal operation for Yeast, ldbc, and MiCo: (a) local access to node edges,
and (b) global filtering of nodes based on degree.

various problems arising with it. BlazeGraph’s documen-
tation, instead, is largely outdated. Also, even though the
system relies a lot on the user for proper configuration, the
information provided is generally cryptic.

Regarding the configuration of the other systems, we re-
port that Neo4J doesn’t require any specific configuration.
OrientDB instead supports by default a number of edge la-

bels at most equal to 32676 divided by the number of cores
in the machine (e.g., 4084 edge labels on a 8 cores machine),
for supporting more labels, it requires a special feature to
be disabled. ArangoDB requires two configurations, one for
the engine, and one for the V8 javascript server, the second
regards the level of logging of the system. Without proper
configuration (with only default values) this system gener-

21

10

100

1.000

10.000

100.000

1.000.000

Ye
as

t

M
iC

o

LD
BC

Ye
as

t

M
iC

o

LD
BC

Q34 Q35

Ti
m

e
(m

s)

10

100

1.000

Ye
as

t

ldb
c

M
iC

o

Ye
as

t

ldb
c

M
iC

o

Ye
as

t

ldb
c

M
iC

o

Ye
as

t

ldb
c

M
iC

o

Ye
as

t

ldb
c

M
iC

o

Ye
as

t

ldb
c

M
iC

o

Q22 Q23 Q24 Q25 Q26 Q27

Ti
m

e
(m

s)

Batch Execution

Neo 1.9 Neo 3.0 Orient Tit. 0.5 Tit. 1.0 Sparksee Blaze Arango Sqlg

100

1.000

10.000

100.000

1.000.000

Ye
as

t

ldb
c

M
iC

o

Ye
as

t

ldb
c

M
iC

o

Q34 Q35

Ti
m

e
(m

s)

Batch Execution(b)(a) (c)

Figure 21: Time required for traversal operations for Yeast, ldbc, and MiCo: (a) local access to node edges
in batch mode, and for shortest path search (b) in isolation, and (c) in batch mode.

10

100

1.000

10.000

100.000

1.000.000

Ye
as

t

M
iC

o

LD
BC

Ye
as

t

M
iC

o

LD
BC

Ye
as

t

M
iC

o

LD
BC

Ye
as

t

M
iC

o

LD
BC

Q32: depth 2 depth 3 depth 4 depth 5

Tim
e

(m
s)

Neo 1.9 Neo 3.0 Orient Tit. 0.5 Tit. 1.0 Sparksee Blaze Arango Sqlg

10

100

1.000

10.000

100.000

1.000.000

Ye
as

t

M
iC

o

LD
BC

Ye
as

t

M
iC

o

LD
BC

Ye
as

t

M
iC

o

LD
BC

Ye
as

t

M
iC

o

LD
BC

Q33: depth 2 depth 3 depth 4 depth 5

Tim
e

(m
s)

(b)(a)

Figure 22: Time required for breadth-first traversal with (a) and without (b) label filtering for Yeast, ldbc,
and MiCo.

10

100

1.000

10.000

100.000

1.000.000

Ye
as

t

M
iC

o

LD
BC

Ye
as

t

M
iC

o

LD
BC

Ye
as

t

M
iC

o

LD
BC

Ye
as

t

M
iC

o

LD
BC

Q33: depth 2 depth 3 depth 4 depth 5

Ti
m

e
(m

s)

Batch Execution

10

100

1.000

10.000

100.000

1.000.000

Ye
as

t

M
iC

o

LD
BC

Ye
as

t

M
iC

o

LD
BC

Ye
as

t

M
iC

o

LD
BC

Ye
as

t

M
iC

o

LD
BC

Q32: depth 2 depth 3 depth 4 depth 5

Ti
m

e
(m

s)

Batch Execution

Neo 1.9 Neo 3.0 Orient Tit. 0.5 Tit. 1.0 Sparksee Blaze Arango Sqlg

(b)(a)

Figure 23: Time required for breadth-first traversal with (a) and without (b) label filtering in batch mode
for Yeast, ldbc, and MiCo.

ated 40 GB of log files in about 24 hours of activity, with a
single active client. For Titan instead the most important
configurations are for the JVM Garbage Collection and for
the Cassandra backend. Additionally, with large datasets,
it is necessary to disable automatic schema creation, and to
create instead the schema manually before loading the data.

All systems based on Java, were also extremely sensitive
to the effect of the garbage collection routines. When deal-
ing with data-intensive applications and a large amount of
main-memory, it is necessary to provide a customized con-
figuration to the JVM, yet, none of the systems provide clear
instructions on how to tune it properly for their needs, but
they only propose generic advices.

Finally we report on the Tinkerpop/Gremlin documen-
tation. For version 2.6 the list of supported methods with
some examples are provided 8, for version 3 the official man-
uals are much more extended 9, although not to the benefit
of clarity. In this sense, we also hope that the code of the
queries implemented in this study serve as more concrete tu-
torial for understanding the basics of the Gremlin language.

Loading problems. As already mentioned, we encoun-
tered a great deal of issues when trying to load the datasets
in some of the databases tested. ArangoDB in particular,
8
gremlindocs.spmallette.documentup.com

9
http://tinkerpop.apache.org/docs/current/

reference/

22

gremlindocs.spmallette.documentup.com
http://tinkerpop.apache.org/docs/current/reference/
http://tinkerpop.apache.org/docs/current/reference/

Table 5: Relative importance of queries.
Q.# Interactive Exploratory

Business

Analytics

LOADING
1. 3 4 1

CREATE
2. 2 1 3
3. 3 1 4
4. 2 1 3
5. 4 1 4
6. 2 1 3
7. 4 1 4

READ
8. 3 4 1
9. 3 3 1
10. 3 3 2
11. 4 4 4
12. 2 2 2
13. 2 3 2
14. 4 2 4
15. 1 1 3

UPDATE
16. 4 2 4
17. 2 4 3

DELETE
18. 3 1 3
19. 4 2 4
20. 4 2 3
21. 2 1 2

TRAVERSALS
22. 4 4 4
23. 4 4 4
24. 4 4 4
25. 3 3 2
26. 3 3 2
27. 3 3 2
28. 1 3 2
29. 1 3 2
30. 1 3 2
31. 2 3 1
32. 4 3 2
33. 4 4 2
34. 2 3 2
35. 3 4 2

1 = Low importance, 4=Critical Importance

when using Gremlin for loading, sends each node and edge
insertion instruction separately to the server (in a HTTP
call). This method results too slow, even for small datasets,
so that we were forced to use some routines provided by the
back-end system itself. For BlazeGraph, with the exception
of the smallest datasets, we had to activate a specific bulk
loading feature otherwise we were facing loading times in the
order of days. OrientDB as well required us to pass through
some server-side implementation-specific commands in order
to load the datasets. In particular, it didn’t support non-
alphanumeric characters in edge-label, and for the Freebase
samples we had to disable some features that were limit-
ing the maximum number of edge-labels. Also for Sqlg we
re-encoded all edge labels to unique hashes that did not ex-
ceed the 63 characters limit that Postgresql imposes, after
that the loading proceeded without any major issue. Fi-
nally, Titan (in both versions) for any medium to large sized

datasets requires disabling the automatic schema creation
during loading, otherwise its storage back-end (Cassandra)
would get swamped with extra consistency check operations.
This means that the complete schema of the graph, in terms
of node and edge labels and properties, should be known to
the system prior to the insertion of the data, the same way
one should declare the schema in a relational database be-
fore loading any data. This required us to issue a set of
instructions, before loading the data, to create such schema.

Queries, Groovy, and Gremlin. Last, we report that
using Groovy as support language for Gremlin was quite
problematic in some cases. As a matter of fact the Groovy
language has dynamic types, and uses type inference along
with peculiar handling of variable scope. As a result, ex-
plicit type casting is needed when providing the values to
queries in some systems, especially with numbers. For ex-
ample, in Sparksee if one attribute is of Long type and size
(i.e., larger than a 32 bit number), then all values for the at-
tributes with the same name need to be passed and queried
as Long values, otherwise values compatible with the Integer
type will be treated as such, and the search will result in a
mismatch, independently of the value they represent. For
Titan, instead, when not provided by the schema declared a
priori, each value should be inserted as the smaller available
type, i.e., if a number is within the integer range, it should
be converted to the integer type. With the other systems
instead, types are handled transparently for the user, and
work without explicit type casts.

A second problem with Gremlin 2.0 is the lack of explicit
operations for pattern-matching queries and shortest paths
queries. In the new version (Gremlin 3.0) a new ‘match’
operator is introduced, but there is still no operator for the
shortest-path search. Both types of queries could be imple-
mented with the composition of basic constructors (although
for weighted shortest path the implementation would be ex-
tremely hard), while would be better to have an abstract
operator in the language and leave to the engine the imple-
mentation of advanced and optimized algorithms.

Finally, Gremlin doesn’t provide a way to handle indexes,
this as well is a limitation of the language that requires for
the user to access directly the back-end system.

8. CONCLUSIONS
We performed an extensive experimental evaluation of the

state-of-the-art graph databases. We scaled to levels that
have not been considered before, and included systems that
have not been previously considered. Furthermore, we pro-
vided a principled and systematic evaluation methodology
based on micro-benchmarking that contains 35 different op-
erations. We also described the challenges we faced in load-
ing the large datasets and running the queries, and how we
overcame these challenges. We materialized our methodol-
ogy into a suite that we made available on-line [43]. It in-
cludes, scripts, datasets, and queries, among any other inter-
esting material. To the best of our knowledge, our study is
the most complete and up-to-date study of graph databases
available nowadays. Apart from the direct benefits, our work
can complement studies on the different (but highly related)
graph analytic systems.

One of the features not tested yet is parallelism, which is
part of our future work. In fact all our experiments were
conducted on a single machine, not exploiting any of the

23

parallel features that almost all system provide. Neverthe-
less, it is important to notice that many systems advertise
their ability to scale to multiple machines more than other
features, but they seemed unable to exploit at best the re-
sources of a single machine. In particular, in some cases
even simple queries for relatively small db sizes were taking
2 or more hours to complete.

Acknowledgments: The current work has been partially
supported by the Keystone EU Cost Action, a Jean d’Alembert
Fellowship, and the IEEE Smart Cities Initiative.

We would like to thank Sparsity Technologies for pro-
viding us with a Sparksee license. We also thank Michael
Hunger at Neo4j, Dàmaris Coll at Sparsity Technologies,
and Luca Garulli at OrientDB LTD, for the extended as-
sistance with our experiments and for providing valuable
feedbacks to this work. We thank Liviu Alexandru Bogdan
for the help in the early stages of this work, and we would
like to thank also Jonathan Ellithorpe for helping us with
the LDBC data generator, whose code we used to parse and
import the data into the GraphSON format.

References
[1] Apache Cassandra. http://cassandra.apache.org.
[2] Apache Hbase. http://hbase.apache.org.
[3] Apache Lucene. http://lucene.apache.org.
[4] Apache Mesos. http://mesos.apache.org.
[5] Apache tinkerpop. http://tinkerpop.apache.org/.
[6] Arangodb. https://www.arangodb.com/.
[7] BerkeleyDB. http://www.oracle.com/technetwork/products/

berkeleydb.
[8] Docker inc., docker. https://www.docker.com/.
[9] Elasticsearch. http://www.elastic.co/products/elasticsearch.

[10] Infinitegraph. http://www.objectivity.com/products/

infinitegraph.
[11] Neo technology, inc., neo4j. http://neo4j.com.
[12] Ontotext graphdb. http://graphdb.ontotext.com/.
[13] Orient technologies, orientdb. http://orientdb.com/orientdb/.
[14] Sparsity technologies, sparksee. http://www.

sparsity-technologies.com/.
[15] Systap, llc., blazegraph. https://www.blazegraph.com/.
[16] Thinkaurelius, titan. http://titan.thinkaurelius.com/.
[17] B. Alexe, W. C. Tan, and Y. Velegrakis. Stbenchmark: towards

a benchmark for mapping systems. PVLDB, 1(1):230–244, 2008.
[18] R. Angles. A comparison of current graph database models. In

ICDEW, pages 171–177, 2012.
[19] R. Angles, P. Boncz, J. Larriba-Pey, I. Fundulaki, T. Neumann,

O. Erling, P. Neubauer, N. Martinez-Bazan, V. Kotsev, and
I. Toma. The linked data benchmark council: A graph and rdf
industry benchmarking effort. SIGMOD Rec., 43(1):27–31, May
2014.

[20] R. Angles and C. Gutierrez. Survey of graph database models.
ACM Comput. Surv., 40(1):1:1–1:39, Feb. 2008.

[21] R. Angles, A. Prat-Pérez, D. Dominguez-Sal, and J.-L. Larriba-
Pey. Benchmarking database systems for social network applica-
tions. In GRADES, pages 15:1–15:7, New York, NY, USA, 2013.
ACM.

[22] Bast, Hannah and Baurle, Florian and Buchhold, Bjorn and
Haussmann, Elmar. Easy access to the freebase dataset. In Pro-
ceedings of the 23rd International Conference on World Wide
Web, pages 95–98, New York, NY, USA, 2014. ACM.

[23] V. Batagelj and A. Mrvar. Yeast, pajek dataset. http://

vlado.fmf.uni-lj.si/pub/networks/data/, 2006. http://vlado.

fmf.uni-lj.si/pub/networks/data/.
[24] C. Boettiger. An introduction to docker for reproducible re-

search. SIGOPS Oper. Syst. Rev., 49(1):71–79, Jan. 2015.
[25] H. Boral and D. J. Dewitt. A methodology for database sys-

tem performance evaluation. In Proceedings of the International
Conference on Management of Data, pages 176–185, 1984.

[26] D. Bu, Y. Zhao, L. Cai, H. Xue, X. Zhu, H. Lu, J. Zhang, S. Sun,
L. Ling, N. Zhang, et al. Topological structure analysis of the
protein–protein interaction network in budding yeast. Nucleic
acids research, 31(9):2443–2450, 2003.

[27] M. Capotă, T. Hegeman, A. Iosup, A. Prat-Pérez, O. Erling,
and P. Boncz. Graphalytics: A big data benchmark for graph-
processing platforms. In GRADES, pages 7:1–7:6, New York,
NY, USA, 2015. ACM.

[28] J. Cheng, Y. Ke, S. Chu, and M. T. Ozsu. Efficient core decom-
position in massive networks. In ICDE, pages 51–62, 2011.

[29] D. Dominguez-Sal, P. Urbón-Bayes, A. Giménez-Vañó,
S. Gómez-Villamor, N. Martínez-Bazán, and J. L. Larriba-
Pey. Survey of graph database performance on the hpc
scalable graph analysis benchmark. In Proceedings of the
2010 International Conference on Web-age Information
Management, WAIM’10, pages 37–48, Berlin, Heidelberg, 2010.
Springer-Verlag.

[30] P. Drineas, A. Frieze, R. Kannan, S. Vempala, and V. Vinay.
Clustering large graphs via the singular value decomposition.
Mach. Learn., 56(1-3):9–33, June 2004.

[31] M. Elseidy, E. Abdelhamid, S. Skiadopoulos, and P. Kalnis.
Grami: Frequent subgraph and pattern mining in a single large
graph. Proc. VLDB Endow., 7(7):517–528, Mar. 2014.

[32] O. Erling, A. Averbuch, J. Larriba-Pey, H. Chafi, A. Gubichev,
A. Prat, M.-D. Pham, and P. Boncz. The ldbc social network
benchmark: Interactive workload. In SIGMOD, pages 619–630,
2015.

[33] J. Fan, A. G. S. Raj, and J. M. Patel. The case against special-
ized graph analytics engines. In CIDR, 2015.

[34] Google. Freebase data dumps. https://developers.google.com/

freebase/data, 2015.
[35] O. Goonetilleke, S. Sathe, T. Sellis, and X. Zhang. Microblogging

queries on graph databases: An introspection. In GRADES,
pages 5:1–5:6, New York, NY, USA, 2015. ACM.

[36] P. Gupta, A. Goel, J. Lin, A. Sharma, D. Wang, and R. Zadeh.
Wtf: The who to follow service at twitter. In Proceedings of
the 22nd international conference on World Wide Web, pages
505–514. ACM, 2013.

[37] M. Han, K. Daudjee, K. Ammar, M. T. Ozsu, X. Wang, and
T. Jin. An experimental comparison of pregel-like graph pro-
cessing systems. Proc. VLDB Endow., 7(12):1047–1058, Aug.
2014.

[38] F. Holzschuher and R. Peinl. Performance of graph query lan-
guages: Comparison of cypher, gremlin and native access in
neo4j. In Proceedings of the Joint EDBT/ICDT 2013 Work-
shops, EDBT ’13, pages 195–204, New York, NY, USA, 2013.
ACM.

[39] E. Ioannou, N. Rassadko, and Y. Velegrakis. On generat-
ing benchmark data for entity matching. J. Data Semantics,
2(1):37–56, 2013.

[40] S. Jouili and V. Vansteenberghe. An empirical comparison of
graph databases. In Proceedings of the 2013 International Con-
ference on Social Computing, SOCIALCOM ’13, pages 708–715,
Washington, DC, USA, 2013. IEEE Computer Society.

[41] V. Kolomičenko, M. Svoboda, and I. H. Mlýnková. Experimen-
tal comparison of graph databases. In IIWAS, pages 115:115–
115:124, 2013.

[42] M. Lissandrini. Freebase exq data dump. https://disi.unitn.

it/~lissandrini/notes/freebase-data-dump.html, 2017.
[43] M. Lissandrini, M. Brugnara, and Y. Velegrakis. The Trento

GDB Test Suite. https://disi.unitn.it/~lissandrini/gdb.html,
2017.

[44] M. Lissandrini, D. Mottin, T. Palpanas, D. Papadimitriou, and
Y. Velegrakis. Unleashing the power of information graphs. SIG-
MOD Rec., 43(4):21–26, Feb. 2015.

[45] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and
J. M. Hellerstein. Distributed graphlab: A framework for ma-
chine learning and data mining in the cloud. Proc. VLDB En-
dow., 5(8):716–727, Apr. 2012.

[46] Y. Lu, J. Cheng, D. Yan, and H. Wu. Large-scale distributed
graph computing systems: An experimental evaluation. Proc.
VLDB Endow., 8(3):281–292, Nov. 2014.

[47] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski. Pregel: A system for large-scale
graph processing. In SIGMOD, pages 135–146, 2010.

[48] P. Martin. Sqlg. http://www.sqlg.org/.
[49] N. Martínez-Bazan, M. A. Águila Lorente, V. Muntés-Mulero,

D. Dominguez-Sal, S. Gómez-Villamor, and J.-L. Larriba-Pey.

24

http://cassandra.apache.org
http://hbase.apache.org
http://lucene.apache.org
http://mesos.apache.org
http://tinkerpop.apache.org/
https://www.arangodb.com/
http://www.oracle.com/technetwork/products/berkeleydb
http://www.oracle.com/technetwork/products/berkeleydb
https://www.docker.com/
http://www.elastic.co/products/elasticsearch
http://www.objectivity.com/products/infinitegraph
http://www.objectivity.com/products/infinitegraph
http://neo4j.com
http://graphdb.ontotext.com/
http://orientdb.com/orientdb/
http://www.sparsity-technologies.com/
http://www.sparsity-technologies.com/
https://www.blazegraph.com/
http://titan.thinkaurelius.com/
http://vlado.fmf.uni-lj.si/pub/networks/data/
http://vlado.fmf.uni-lj.si/pub/networks/data/
http://vlado.fmf.uni-lj.si/pub/networks/data/
http://vlado.fmf.uni-lj.si/pub/networks/data/
https://developers.google.com/freebase/data
https://developers.google.com/freebase/data
https://disi.unitn.it/~lissandrini/notes/freebase-data-dump.html
https://disi.unitn.it/~lissandrini/notes/freebase-data-dump.html
https://disi.unitn.it/~lissandrini/gdb.html
http://www.sqlg.org/

Efficient graph management based on bitmap indices. In
Proceedings of the 16th International Database Engineering
& Applications Sysmposium, IDEAS ’12, pages 110–119,
New York, NY, USA, 2012. ACM.

[50] N. Martinez-Bazan, S. Gomez-Villamor, and F. Escale-Claveras.
Dex: A high-performance graph database management system.
In ICDEW, pages 124–127, Washington, DC, USA, 2011. IEEE
Computer Society.

[51] F. McSherry, M. Isard, and D. G. Murray. Scalability! but
at what cost? In 15th Workshop on Hot Topics in Operat-
ing Systems (HotOS XV), Kartause Ittingen, Switzerland, 2015.
USENIX Association.

[52] D. Mottin, M. Lissandrini, Y. Velegrakis, and T. Palpanas. Ex-
emplar queries: A new way of searching. The VLDB Journal,
25(6):741–765, Dec. 2016.

[53] J. Okajima. Aufs: Advanced multi layered unification filesystem.
http://aufs.sourceforge.net/.

[54] L. Page, S. Brin, R. Motwani, and T. Winograd. The pager-
ank citation ranking: Bringing order to the web. TR 1999-66,
Stanford InfoLab, Nov.

[55] E. PrudâĂŹHommeaux, A. Seaborne, et al. Sparql query lan-
guage for rdf. W3C recommendation, 15, 2008.

[56] M. A. Rodriguez. The gremlin graph traversal machine and lan-
guage (invited talk). In DBPL, pages 1–10, 2015.

[57] A. Rowstron, D. Narayanan, A. Donnelly, G. O’Shea, and
A. Douglas. Nobody ever got fired for using hadoop on a cluster.
In HotCDP, pages 2:1–2:5, 2012.

[58] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: a core of
semantic knowledge. In Proceedings of the 16th international
conference on World Wide Web, pages 697–706. ACM, 2007.

[59] R. Tarjan. Depth first search and linear graph algorithms. SIAM
JOURNAL ON COMPUTING, 1(2), 1972.

[60] D. Yan, Y. Bu, Y. Tian, A. Deshpande, and J. Cheng. Big graph
analytics systems. In SIGMOD, pages 2241–2243, 2016.

[61] M. Yannakakis. Graph-theoretic methods in database theory. In
PODS, pages 230–242, 1990.

25

http://aufs.sourceforge.net/

