
Noname manuscript No.
(will be inserted by the editor)

Exemplar Queries: A New Way of Searching

Davide Mottin · Matteo Lissandrini · Yannis Velegrakis1 · Themis
Palpanas

Received: 8 April 2015 / Accepted: 23 May 2016

Abstract Modern search engines employ advanced tech-
niques that go beyond the structures that strictly sat-
isfy the query conditions in an effort to better capture
the user intentions. In this work we introduce a novel
query paradigm that considers a user query as an ex-
ample of the data in which the user is interested. We
call these queries exemplar queries. We provide a for-
mal specification of their semantics and show that they
are fundamentally different from notions like queries
by example, approximate queries and related queries.
We provide an implementation of these semantics for
knowledge graphs and present an exact solution with
a number of optimizations that improve performance
without compromising the result quality. We study two
different congruence relations, isomorphism and strong
simulation, for identifying the answers to an exemplar
query. We also provide an approximate solution that
prunes the search space and achieves considerably bet-
ter time-performance with minimal or no impact on ef-
fectiveness. The effectiveness and efficiency of these so-
lutions with synthetic and real datasets are experimen-
tally evaluated and the importance of exemplar queries
in practice is illustrated.

Keywords Exemplar query · Query answering ·
Knowledge graph · Knowledge base
1Partially supported by the ERC grant Lucretius and the KEY-
STONE Cost Action.

D. Mottin, E-mail: davide.mottin@hpi.de
Hasso Plattner Institute

M. Lissandrini, Y. Velegrakis
E-mail: {ml,velgias}@disi.unitn.eu
University of Trento

T. Palpanas, E-mail: themis@mi.parisdescartes.fr
Paris Descartes University

1 Introduction

Traditional query answering is about finding the struc-
tures in a data repository that satisfy the query condi-
tions [2,8,9,15,24,47]. Simpler, less structured and less
specific queries [7] have attracted considerable atten-
tion because users may not always be accustomed to the
technicalities and capabilities of the query language. To
capture the elements of interest given the vague spec-
ifications of such queries, techniques like query relax-
ation [33], semantic enhancements [6], statistics-driven
query answering [19], and log-based analysis [10, 36]
were developed. Yet, these techniques assume that the
user is aware of the characteristics of the structures of
interest and can (at least partially) describe them in
the query.

We advocate here that there are many practical sce-
narios in which the user may not know how to describe
the specifications of the items of interest, but does know
one of them, i.e., one of those elements that are ex-
pected to be in the result set. Here, we study ways to
infer the result set using the known item as a seed.
In other words, the user “query” works as an exam-
ple of what the elements of interest are. We call this
novel query paradigm Exemplar Queries to emphasize
its different nature and the new evaluation methods it
requires. Exemplar Queries find application, amongst
others, in cases of a student, a curious citizen, an in-
vestigator, a lawyer or a reporter that needs to perform
a study on a topic to which she may not be familiar
with, but has as a starting point an element from those
related to the topic.

The notion of exemplar queries reminisces the no-
tion of query by example (QBE) [52], yet, it is funda-
mentally different. In QBE, the query is an instance of
the intended conditions and works as a wildcard query.

2 Davide Mottin et al.

Fig. 1: Exemplar Query Answering Process

An exemplar query, on the other hand, indicates the
type of items that are expected to be in the results.
These elements may have characteristics different from
those mentioned in the example, simply because their
similarity to the example that the user query provides
may be based on characteristics that are not explicitly
stated in the query (i.e., the example). Our approach
is also different from query relaxation [33, 35], which
aims at producing more generic versions of a query, for
a similar reason.

Motivating Example Consider a student who wants
to perform a study on company acquisitions in the Bay
area, without being an expert in the field, nor familiar
with the related terminology. Issuing a query with the
terms “acquisitions” and “Bay Area” will return docu-
ments about acquisitions and also mentioning the Bay
area. Yet, an article on the takeover of Tumblr by Ya-
hoo! may not be returned if the terms “acquisition” and
“Bay area” are not explicitly mentioned in the text.

The student knows that a good example for the type
of acquisition she is looking for is the one of YouTube by
Google. Thus, she issues the query: “Google founded-in
Menlo Park acquired YouTube”. The search engine typ-
ically responds with results related to Google, Menlo
Park, and YouTube, but will not return anything re-
lated to the acquisition of Tumblr by Yahoo!. If many
users have performed similar searches in the past, an
analysis of the query logs may reveal that information,
and the search engine (based on log analysis) may pro-
pose, in the related searches section, queries on Yahoo!
and Tumblr. (A simple test in existing search engines
reveals that this is not actually happening.) Relaxing
one or more of the query conditions does not help in a
significant way, since the results are still focused around
the term “Google”.

Consider now a second candidate answer for the user
query: Paramount that was acquired by CBS. Between

the Yahoo!-Tumblr and CBS-Paramount answers, it is
more likely that the former is among the company ac-
quisitions that the user is interested in, and not the lat-
ter. This is because even though Yahoo! was founded
in a different city than Google, that city is still in Cal-
ifornia (just like with Google), while the city that CBS
was founded in is New York. Furthermore, the exam-
ple of Google-YouTube that the user provided is about
IT companies, and so is the Yahoo!-Tumblr pair, while
CBS-Paramount belong to the broadcasting industry.

Therefore, there is a need to devise methods for in-
ferring the set of elements that the user is interested in
from a sample (of that set), which may be provided by
the user. Exemplar queries can form the basis of a new
form of search engines that use them as the main query
evaluation mechanism, or they can be used to enhance
the services that search engines are currently offering.

In particular, in parallel to the query evaluation a
search engine performs, the query can also be seen as an
exemplar query and be evaluated as such. These results
can be appended to the results the search engine gen-
erates, increasing the probability to capture the user’s
intent. Alternatively, the results of the exemplar query
evaluation can be modeled as a set of queries, and then
appended in the list of “related/additional queries” that
most modern search engines are currently suggesting to
their users.

Proposed Approach: Evaluating an exemplar query
is a two-step approach. The first identifies in the data
the elements mentioned in the user query. These ele-
ments may be in the form of documents, entities, tu-
ples, or web-pages, and they constitute the user sample,
which is the input to our approach. The second step ex-
amines the database and finds elements similar to the
user sample: those are the elements belonging to the
desired result set. These elements constitute the solu-
tions, which are eventually ranked and presented to the
user. A high-level overview of a system employing the
exemplar query paradigm to answer keyword queries on
a knowledge graph can be seen in Figure 1.

We highlight that the notion of exemplar queries
is generic, and can be applied to any data model. In
this study though, we focus on the case where data is
represented using a graph with labeled edges, e.g., a
knowledge graph. Therefore, the samples and the solu-
tions are substructures of the graph, namely, subgraphs.
Regarding the first step, that is, the interpretation of
the user query within the database, there exist sev-
eral solutions that have been proposed in the litera-
ture [26,27,40]. Thus, in this work we focus on the sec-
ond step, that of searching for relevant subgraphs, using
two alternative measures that we call congruence rela-
tions: graph-isomorphism, and strong simulation. Fur-

Exemplar Queries: A New Way of Searching 3

thermore, we are interested in the efficient retrieval of
the k most relevant results. Traditional query answer-
ing on graphs [28, 29, 51] focuses on finding the best
subset of nodes matching a given graph-query, and of-
fers no straightforward and time-efficient adaptation for
the retrieval of the top-k most relevant subgraphs based
on our form of congruence. (The brute-force solution is
exponential in nature.)

Example 1 In order to illustrate these ideas, consider
the knowledge graph depicted in Figure 2, and the ex-
emplar query “Google founded-in Menlo Park acquired
YouTube”, represented by graph Q1 at the top left cor-
ner of the figure. The evaluation of this query on the
database results to the user sample that is indicated in
the database with the dashed box labeled S. Search-
ing for structures that are (edge-isomorphic) congruent
to the user sample results to the two structures indi-
cated with the dotted line boxes labeled A1 and A2,
which refer to companies founded in some city that
have acquired other companies. These are the answers
to the exemplar query, and in this particular example,
we would like to have the “Yahoo!-Santa Clara-Tumblr”
answer ranked higher than “CBS-NYC-Paramount”, since
the former is closer to the subject of the exemplar query
(being them, California-based, IT companies).

In this work, we propose an efficient iterative prun-
ing schema that pre-computes a compact representa-
tion of each node in terms of neighbor nodes at a fixed
distance from it. We demonstrate that this algorithm is
exact, i.e., it preserves the quality and correctness of the
answers, while significantly reducing computation time.
We also propose an approximate algorithm, which can
effectively prune the search space. We show that this
heuristic works very well in practice, with no signif-
icant compromise on the quality of the results. As a
trade-off between efficiency and quality we study a top-
k algorithm, that iteratively explores the search space
and stops as soon as the k best answers are found.

Contributions: In this paper we make the following
contributions:

(1) We introduce and formally define a novel form of
query answering, referred to as exemplar queries,
that treats a query as a sample from the desired
result set.

(2) We study exemplar queries for graph-based edge-
labeled models, and devise two congruence relations,
based on subgraph isomorphism and strong simu-
lation, that effectively answer exemplar queries in
this context. In addition, we provide a theoretical
analysis for our relations, proving their correctness,
and we demonstrate that the two proposed relations
capture different, yet interesting use cases.

(3) We propose two algorithms to compute the exact
solution: a straightforward solution, and an opti-
mized algorithm that can prune the search space.
We also introduce an efficient top-k algorithm based
on our proposed ranking function. Furthermore, we
describe an approximate algorithm with significant
efficiency gains and minimal effect on the final rank-
ing, suitable for real-time query answering.

(4) We perform a thorough experimental evaluation, us-
ing the largest multigraph ever used (Freebase [20])
in this field. We experimentally show that existing
approaches either fail to produce correct exemplar
query evaluations, or they do so in a much longer
time, which makes them inapplicable for online ap-
plications. In contrast, the experiments demonstrate
the efficiency of our solutions, and a user-study val-
idates the usefulness of exemplar queries.

Paper Structure: The remainder of this paper1 is
structured as follows. Section 2 presents the related
work, and Section 3 formally defines our problem. Sec-
tion 4 introduces the generic exact algorithm and the
two instance-specific congruence relations used in the
paper. Algorithmic solutions for isomorphic structures
are described in Section 5, and for strong simulation in
Section 6. Section 7 summarizes the proposed approach,
explaining how to combine the algorithms and how to
rank the results. We present the experimental evalua-
tion in Section 8, and finally we conclude in Section 9.

2 Related work

Searching the web has been studied for a long time and
the task of understanding the user queries is vital in
many scenarios. In this area several solutions have been
proposed, all starting from the same premise: the user
is looking for a particular resource, but does not know
how to describe it properly. In this light, we review
the work in the areas of query refinement and query
diversification, as well as in that of query answering on
graphs, highlighting the differences to our problem.

Query Modification: Many different works study ways
to provide the user with answers that may be of interest
even if they were not explicitly requested in the query.
Query refinement [33] extends the user query in order
to retrieve more precise results [2, 8, 41, 47] using some
external knowledge. In our work we are not trying to
alter the query, but only use it as a sample that can lead
us to additional queries generating resources of interest.
Query relaxation [33,35], on the other hand, relaxes an
over-specified query that returns no answers to allow a

1 A preliminary version of this paper appeared in [34].

4 Davide Mottin et al.

Fig. 2: An Exemplar Query Answering demonstration.

non-empty answer set to be produced. Our approach is
somehow similar, however, query relaxation is driven by
the conditions in the query. It will not include results
that are similar to those the user query generates, un-
less they are satisfying a subset of these conditions. A
recent work [23] proposes a method to perform seman-
tic exploration of the knowledge graph. This is in-line
with the query relaxation works in which the informa-
tion need of the user is not clear from the beginning. In
contrast, our approach adds additional results by using
similarities at the data level. Related queries deal with
the discovery of queries generating results of possible
interest to a user based on a query that the user has
already posed. Their discovery is based on information
like query logs [2,47], document corpuses [8], knowledge
bases [37] or wikis [10]. Since our work can be used to
suggest related queries as explained in the introduction,
we can be seen as complementary to these approaches,
offering a new way of generating related queries.

Another group of works that do not try to extend
or improve the query results with new data, but only
to organize them in some way that is more comprehen-
sive to the user, is the one of faceted-search [15] and
query categorization [45]. Despite the fundamental dif-
ference from our approach, these works are also aiming
at increasing the user satisfaction.

Query Answering on Graphs: Most works on find-
ing a graph structure in a large graph exploit graph edit
distance that measures similarity between subgraphs [18].
Computing the graph edit-distance is NP-hard and nu-
merous indexing and pruning techniques have been pro-
posed to improve performance [46, 49]. Our solution
is mainly related to approximate query answering on
graphs. Approximate search can be performed when the
user does not know the exact keywords to formulate the
query, formulating an incomplete or imprecise query. In

graphs, p-homomorphism [16] enables similarity struc-
ture search instead of the strict isomorphism. Likewise,
NeMa [29] introduces the notion of node neighborhood
(i.e., the set of nodes reachable from a source node in a
limited number of steps) to match nodes and edges ap-
proximately, which is relevant to our approach. One re-
cent work, SLQ [50], elaborates over the latter including
a ranking model for a set of fixed textual/topological
transformations from query to answer nodes in a graph.
Similarly, strong simulation [32], which we employ in
our study, finds approximate answers to a graph query.
Nevertheless, all these works subsume that the user is
able to express the query conditions, even though par-
tially. This is not true in our case.

3 Problem Statement

The first step for retrieving the answers to an exemplar
query can be easily achieved using traditional query
evaluation techniques. We denote the results of this
type of evaluation of a query Q as eval(Q) and refer
to it as the user sample.

The second step is to find the remaining structures
of interest for the user, based on the structure that
has been identified in the first step. Note that there
exists a query that describes all these structures that
the user is looking for, it is just that she is not aware
of that query, or is not in a position to describe it.
Thus, it is natural to assume that all the structures
of interest have some commonalities among them, and
especially with the one that the user provided as an
indicative example. As such, we are interested in finding
similar structures to the results of the first step, and
return these results as an answer to the user-provided
query. We refer to this new query paradigm as exemplar

Exemplar Queries: A New Way of Searching 5

queries, and the results of their evaluation as exemplar
answers, or simply answers.

Definition 1 The evaluation of an exemplar query Q

on a database D, denoted as xmpEval(Q), is the set {a
| ∃s s.t. s∈eval(Q) ∧ a≈s}, where a and s are structures
in D and ≈ indicates a congruence relation.

In the definition above we refer to the concept of
congruence relation as a binary relation defined over the
elements of the database, with the following semantics:
given an element from the database, it tests its mem-
bership to the desired answer set that is implied by the
element in eval(Q) (i.e., the sample element provided
by the user). Intuitively, a congruence relation defined
this way acts as a similarity check, i.e., deciding whether
the two structures are similar or not.

Note that the definition of exemplar queries above
is independent of the data model, the query form, the
retrieved results, and the congruence relation. As long
as there is a standard query evaluation methodology
and some congruence relation that can be used to fit
a specific use case, exemplar queries can be answered.
This leads to flexibility, and the ability to use exem-
plar queries in a wide range of different applications.
Nonetheless, while Definition 1 adapts to many appli-
cation scenarios and data models, the congruence re-
lation should be carefully selected based on the do-
main and the expected results. A proper congruence
relation should be able to infer from the user sample
and the database the set of conditions that are likely to
represent the desired result set. Indeed, recent studies
employ (although not explicitly) the notion of exem-
plar query answering for the relational model [13, 43],
where the congruence relation is represented by the
select-project-join query that generates the user sam-
ples. Therefore, in their case, two elements belongs to
the same desired result set if they satisfy the same query
conditions.

On the contrary, we are interested in applying ex-
emplar queries in cases where the data is highly hetero-
geneous, involving relaxed structures. This is notably
the case of knowledge-graphs that represent entities as
labeled nodes with attributes, and relationships as la-
beled edges. For this reason, in our current study we
have chosen to employ this flexible data model, a simple
query form with a traditional query evaluation that is
based on subgraph matching, and two very generic con-
gruence relations that are based on edge label-preserving
similarity on graphs.

As mentioned above, for the representation of the
data we consider an entity-based data model [14] that
can represent various forms of heterogeneous knowl-
edge. In particular, we assume an infinite set of labels

L and of values V. The set V consists of an infinite
set of atomic values T and of object identifiers O, i.e.,
V=T ∪O. An object is a representation of a real world
entity or concept, and is modeled through an object
identifier and a set of attributes for that identifier mod-
eling characteristic properties of the real world entity
or concept. An attribute of an object o∈O is a triple
〈o, `, v〉, where `∈L and v∈V.

A database is a finite collection of objects, along-
side a finite set of attributes for these objects. The at-
tributes are either connecting the objects or specifying
some characteristic properties of them.

Definition 2 A database is a pair D : 〈O,A〉 where
O ⊆ O and A⊂O×L×(O∪T), both finite.

A database can be represented as a graph where
every object, or atomic value in the database, is repre-
sented as a node and every attribute as a labeled edge
from the node representing the object of the attribute
to the node representing its value. Thus, we can equiv-
alently say that a database 〈O,A〉 is a graph G(N,E),
also denoted as 〈N,E〉, where the set of nodes N is
the set {n | n ∈ O ∨ ∃(n′, `, n) ∈A} and the set of
edges E is the set {n `→ n′ | (n, `, n′) ∈A}. The expres-
sion n

`→ n′, denotes an edge from node n to node n′
labeled `. We also say that two nodes n1, n2 are equiv-
alent, and denote it as n≡n′, if they represent the same
atomic value or the same object, i.e., the identifiers of
the objects they respectively represent are the same.

A query is traditionally an expression describing a
set of objects alongside a set of conditions they need
to satisfy. These conditions describe certain character-
istics of these objects and the relationships they may
have among them. We make the natural assumption
that the objects referenced in a query are somehow all
connected, otherwise the query expression would actu-
ally constitute two independent queries. Since a query
describes a set of objects with attributes, i.e., properties
and relationships among them, it can also be seen as a
database and consequently represented as a connected
graph. Answering a query on a database means finding
the database structures that satisfy the query specifi-
cation. By the term database structures we mean a set
of objects and a set of attributes for these objects. In
graph terms, answering a query means finding the sub-
graphs in the database that have a structure matching
the graph representation of the query. The set of these
subgraphs constitutes the answer set of the query.

Definition 3 A query Q is a database whose graph
representation is a connected graph Q : 〈NQ, EQ〉. An
answer to a query Q : 〈NQ, EQ〉 on a database D is any
connected subgraph D′ : 〈ND′ , ED′〉 of D matching the

6 Davide Mottin et al.

query Q, i.e., there exists a binary relation R, such
that ∀nQ ∈ NQ,∃nD′ ∈ ND′ : nQR nD′ . The set of all
such subgraphs, denoted as eval(Q), is referred to as
the answer set of the query.

Query Q is finally evaluated as an exemplar query
according to Definition 1. Finally, we note that we are
interested in returning a ranked list of results, and in
particular, the top-k most similar and relevant struc-
tures. Then, given a query Q evaluated as an exemplar
query, in this work we address the following problem.

Problem 1 (Exemplar Query Answering) Given
an exemplar query Q and a parameter k, find the top-k
answers a ∈ D such that a ∈ xmpEval(Q) for a chosen
congruence relation ≈ and a ranking function ρ.

In the next paragraphs we provide insights about
suitable similarity and ranking functions for the case of
knowledge graphs.

Congruence Relation: Even though several different
congruence relations can be used, we are interested in
those that are able to preserve the user intent by gen-
eralizing the set of conditions that can be derived by
the sample. Hence, we consider two alternatives based
on edge-preserving subgraph matching relations: (a) a
congruence relation based on the notion of subgraph iso-
morphism [12]; and (b) a more elastic relation, based
on the recently introduced strong simulation [32]. While
subgraph isomorphism is a natural method for identi-
fying perfect matches of an input query-graph in the
database, strong simulation offers the ability to group
matching nodes based on nearby edge-labels. As we dis-
cuss in more detail later on, strong simulation relaxes
the strict requirements of isomorphism, while preserv-
ing the topology and the semantics of the original query.
The motivations for a less rigid congruence relation
are twofold: compactness, and expressiveness. Compact-
ness allows us to aggregate several answers in a single
graph (e.g., all the acquisitions from Google), while ex-
pressiveness allows for some freedom in the structure
matched. The following example motivates the need for
the strong simulation congruence relation.

Example 2 Consider the example described in Section 1
and the portion of the database illustrated in Figure 2.
Consider query Q2, shown at the top left corner of the
figure, where the user additionally asks for companies
that own a website. The query evaluates to the same
sample S. Then the only perfect match is A2, which is
semantically further away than A1. In this case, strict
equality may not best serve the intentions of the user,
who may be interested in companies with at least one
acquisition and one website. Therefore, the congruence
relation should allow some degree of freedom. Using

simulation both A1 and A2 are returned as answers
(Tumblr serving both as an acquisition and a website).

Ranking function: An exemplar query is an implicit
indication of the structure and the kind of results the
user expects. Therefore, an ideal ranking function should
be able to distinguish answers that have characteristics
similar to the user sample and at the same time penalize
results that are semantically unrelated with the query.
We explain this intuition with an example (a formal
discussion is included in Section 7).

Example 3 Consider again the database illustrated in
Figure 2, and the user (exemplar) query Q1, shown at
the top left corner of the figure. The evaluation of this
query on the database results to the user sample shown
in the database with the dashed box labeled S, and
the structures that are (edge-isomorphic) similar to the
user sample are indicated with the dotted line boxes
labeled A1 and A2. These are the answers to the exem-
plar query. We observe that A1 has around itself more
nodes and edges in common to the user sample S (for in-
stance, IT Company, Search Engine and California)
than A2. Therefore, A1 should be ranked higher than
A2.

Since the first step of the exemplar query evaluation
is a standard search in a graph for a subgraph matching
the user query and many solutions have already been
studied [26,27,40], we will not discuss this problem fur-
ther. Instead, we focus on the implementation of the
second step, which is to devise a method that given such
subgraph (the user sample) finds other edge-isomorphic
(or alternatively simulating) subgraphs (the exemplar
answers) and ranks them based on their similarity to
nodes around the query, as well as their position within
the query neighborhood. One of the challenging parts
of this is that there is no clear limit on how large a
query neighborhood to consider, apart from the entire
database, i.e., how far from the user sample an iso-
morphic (or simulating) answer can still be considered
relevant to the query. In our implementation, we use
Freebase, which is one of the largest knowledge-graphs
available nowadays. Existing works on graph similarity
concentrate the effort of searching on a large number of
small graphs, but searching on a very large graph in the
form and size we consider here has not been considered
before, even though there is an increasing interest for
such application [31].

4 The Basic XQ Algorithm

Once the user query has been evaluated and the sample
S has been identified in the database D, the set of con-
gruent structures will have to be discovered. To do so,

Exemplar Queries: A New Way of Searching 7

Algorithm 1 XQ
Input: Database D : 〈N,E〉
Input: User Query Q
Output: Set of exemplar answers Q
1: Q ← ∅
2: S ← eval(Q)
3: ns ← selectARandomNode(S)
4: for each n ∈ N do
5: Q ← Q ∪ FindSimilarSubgraphs(S, ns, D, n)
6: Rank(Q)
7: return Q

the user sample S will have to be compared with every
other subgraph in the database. Instead of considering
the exponential number of subgraphs in the database,
by following a typical backtracking approach [44], a
node ns from S is randomly selected to serve as a seed.
Then all the nodes in the database D are considered,
one at a time. For each such node n, we check whether
a subgraph congruent to S can be constructed when
mapping ns to n. If such a graph is found, then it is
added in the set of exemplar answers. At the end of
this procedure the exemplar answers are sorted and re-
turned to the user (all of them, or only the top-k) as
the result to the exemplar query. (The sorting task is
studied in detail in Section 7.)

The pseudo-code of the above steps is described in
Algorithm 1. The construction of the matching sub-
graphs (line 5 in Algorithm 1) is done by initially con-
sidering a graph G consisting only from the node ns
and a subgraph T consisting only from node n, and as-
suming that congruence relation maps ns to n. Then
the algorithm iteratively tries to expand the subgraphs
G and T with edges from S and D, respectively, such
that the resulting subgraphs remain congruent (based
on the selected congruence relation). If (after a number
of steps) the graph G becomes equal to S, then T is
one of the answers.

Searching for possible matches of the user sample in
the entire database, as the Algorithm XQ requires, is an
expensive operation. Thus, one of the main challenges
is how to effectively and efficiently reduce the search
space preserving quality guarantees on the answers. In
what follows we propose solutions based on structural
properties of the database that adapt to different con-
gruence relations.

4.1 Instantiations of the Congruence Relation

The XQ algorithm requires the definition of a congru-
ence relation to find the answers to an exemplar query.
Although different congruence relations could fit the
definition, we are interested in those that preserve the
semantic properties of the user query. In a knowledge

graph a candidate similarity function should preserve
the edge-labels of the user sample, and the (basic) lay-
out of connections between node, since these are the el-
ementary features that constitute the user sample. We
identify two compelling congruence relations, based on:
(1) subgraph isomorphism, which finds exact matches
and is known to be NP-hard, and (2) strong simula-
tion, a weaker notion of subgraph matching that admits
a cubic-time solution in the size of the query [32].

In the following sections, we formally define the two
congruence relations we use in this work, and discuss
their properties.

4.1.1 Subgraph isomorphism

The most natural definition of congruence to the query
terms is strict equality. In graph terms, this means find-
ing structures that are subgraph isomorphic to the user
sample. While subgraph isomorphism is defined over
node and edge labels, matching node labels means re-
ferring to the exact same object, which is too strict for
the exemplar query scenario. Therefore, we define edge-
preserving2 isomorphism as follows:

Definition 4 A database D is edge-preserving isomor-
phic to a database D′, denoted as D'D′, if there is a
bijective function µ from the nodes of D to the nodes
of D′ such that for every edge n1

`→n2 in D, the edge
µ(n1) `→µ(n2) is in D′.

Edge-preserving isomorphism is a very restrictive
congruence relation, in that it recognizes only exact
structures. We acknowledge that this level of precision
could be desired in some cases but detrimental in other
settings. Consider for instance the query Q2 and the
two graphs S and A2 from Example 2. They are concep-
tually very close, S is an IT company that has bought
another company, owns a website and was founded in
California. A1 on the other hand differs from S, because
Tumblr is a website and also an acquisition of Yahoo.
However, the user could be interested in A1 and may
want it included in the results. To allow more flexibility
in our congruence relation we propose simulation [39],
and in particular strong simulation [32], which we dis-
cuss next.

4.1.2 Strong simulation

In simulation, we say that a candidate answer graph
simulates a query graph if the former contains the same
edge sequences of the latter, and preserves sequences of

2 In the rest of the document we will be dropping the part
“edge-preserving”.

8 Davide Mottin et al.

Fig. 3: A sample (S) and two simulating graphs (G1
and G2).

edge labels in the same order. In practice, this trans-
lates to checking if every sequence of edge labels in the
query is contained in the candidate answer. Since the
subgraph match is performed in a sequence-wise fash-
ion, this notion preserves the semantics of the query,
yet, allows for some freedom in the structure. This can
be seen in Example 2, where A1 is not isomorphic to
Q2, yet it is simulating.

This flexibility though, has some significant short-
comings. First, graph simulation does not consider parent-
child relationships, since it only requires that nodes in
the relation match the outgoing edges of the query. Sec-
ond, the matched graph is not bounded, in that any se-
quence of edges with the same label can be matched to
a single edge in the query. These issues are illustrated
in the following example, where we show two graphs
that are matched by simulation, but not by strong-
simulation, and do not satisfy the user intention.

Example 4 Consider the scenario in Figure 3. The user
is asking for IT companies, such that one acquired the
other with a focus on the Investors. She provides the ex-
ample “Sequoia Capital invested in IT company Youtube
acquired by IT company Google”. This is depicted as
the sample S in the figure, and we then search for con-
gruent graphs using simulation. Searching for structures
simulating the query results inG1 andG2.G1 simulates
S because both Google and Yahoo! have an outgoing ac-
quired edge, Youtube and Tumblr have an isA edge, IT
Company matches with both IT Company and Website
in G1, and Sequoia and Spark have an investor edge.
However, the fundamental property that YouTube and
Tumblr are both IT Companies is lost, since simula-
tion does not require to match nodes with the same
parent. Note that also G2 simulates S, since Google is
matched by Microsoft and CBS, YouTube is matched by
Paramount, IT Company is matched by Publishing and
IT Company in G2, and Sequoia is matched by Inter-
West. Intuitively, every edge sequence in S is matched
by some sequence in G2. Simulation disregards the lo-
cality of the match, finding possible answers in any part
of the graph. Consequently, even though G1 and G2 are

correctly simulating the sample, they both prove to be
unsatisfying answers.

Motivated by the above discussion, we adopt a more
stringent congruence relation called strong simulation.
Strong simulation requires the definition of dual simula-
tion. Dual simulation is a bidirectional simulation that
checks both the incoming and outgoing edges of each
query node.

Definition 5 (Dual simulation) Let S : 〈Ns, Es〉
and D : 〈N,E〉 be two databases represented as graphs.
D dual simulates S, denoted as S ED D, if there exists
a relation R, such that for every node ns ∈ Ns and
n ∈ N for which (ns, n) ∈ R:

(1) for all ns
`→ n′s, exists n′ such that n `→ n′ and

(n′s, n′) ∈ R, and
(2) for all n′′s

`→ ns, exists n′′ such that n′′ `→ n and
(n′′s , n′′) ∈ R.

While dual simulation admits answers of any diam-
eter, strong simulation is bounded to the diameter of
the query. Strong simulation is based on the notion of
reachable nodes. We call d-hop node of a node n a node
that is reachable from n in at most d hops, i.e., the
shortest path from n to this node is no longer than d.

Definition 6 (d-hop) Let n ∈ N be a node of a database
D : 〈N,E〉. The node ni ∈ N is a d-hop node of n if
there exists a path from n to ni of length at most d.
The d-hop node set of n, denoted as Nd(n), is the set of
d-hop nodes of n. The d-graph of n, denoted as D[n, d]
is the subgraph of D induced3 by the nodes in Nd(n).

Strong simulation defines bounds on the size of the
simulation. Moreover, as proved in [32], the size of the
maximum dual simulation relation is bounded by the
diameter of the query. Recall that the diameter of a
query is the length of the longest shortest path.

Definition 7 (Strong simulation) A database D :
〈N,E〉 strong simulates a database S : 〈Ns, Es〉, de-
noted as S ES D, if there exists a node n ∈ N and a
d-graph D[n, d] such that:

(1) d is equal to the diameter of the database S.
(2) S ED D[n, d] with the maximal dual simulation

(i.e., any other dual simulation of S in D[n, d] is
contained in the maximal).

This definition embodies the two important prop-
erties of bounding the simulation relation size within

3 A subgraph induced by a set of nodes N is the subgraph
whose edges have both endpoints in N .

Exemplar Queries: A New Way of Searching 9

the d-graph, and preserving the parent-child relation-
ships. Looking back at Example 2, we observe that us-
ing Definition 7, the query returns both A1 and A2 as
results. At the same time, both G1 and G2 (shown in
Figure 3) are rejected, which is the desired behavior.
Note that, differently from the seminal work [32], our
definition matches edge labels instead of node labels. In
Section 6, we describe how we can adapt the existing
algorithms for this case, providing analytical results on
the correctness of this adaptation.

The following sections introduce algorithmic solu-
tions for both congruence relations. Section 5 intro-
duces approximate and exact algorithms to evaluate
exemplar queries with isomorphism, while Section 6 de-
scribes our strong simulation algorithms, designed for
the case of exemplar queries.

5 Finding Subgraph Isomorphic Answers

Since subgraph isomorphism is an NP-hard problem,
we need to carefully design our algorithmic solutions in
order to be efficient in practice. This becomes particu-
larly important when the database size is large. In this
section, we present the methods, and the ideas behind
them, that we devised to efficiently answer exemplar
queries using isomorphism as the congruence relation.

5.1 An Efficient Exact Solution

To improve performance, we propose an effective way to
prune the search space, i.e., the list of database nodes
we have to match to the nodes of the user sample in
order to find isomorphic structures, leading to a new
algorithm: FastXQ. The FastXQ algorithm is divided
into two steps, first we use the query to drive a process
that will prune the search space, then we apply XQ to
the resulting restricted space. To prune the space we de-
vise an efficient technique for comparing nodes, and an
algorithm for effectively rejecting pairs of nodes that
are bound to not participate in any isomorphic map-
ping. We call this algorithm IterativePruning. Al-
though this technique do not remove all non-matching
subgraphs, the schema is effective and reduces signifi-
cantly the search space and therefore the total number
isomorphic checks. The false positives are subsequently
removed by running the traditional isomorphic verifica-
tion algorithm on them.

To compare nodes (and inspired by [28]), we devise
a technique that is meant to represent the part of the
graph around them in a compact way, and to match
the nodes in advance without the need to examine all

the nodes in the graph. More specifically, the idea is to
store a compact representation of nodes and edges that
are at a fixed distance d from each node. This provides
an effective way to compare nodes, allowing the pruning
to remove the non-matching nodes without having to
actually visit any part of the graph around them.

A basic concept of our approach is also the notion of
d-hop nodes introduced in Definition 6. For every node
in the database we compute a table consisting of the
number of nodes that are reachable from that node at
some specific distance and with a path ending with a
label `. In other words, for a node n, for every label `
and for every distance i we keep the cardinality of the
set Wn,`,i, where

Wn,`,i = {n1|n1
`→ n2 ∨ n1

`← n2, n2 ∈ Ni−1(n)}
In practice, since doing so for every node in the

database is expensive in terms of time, we implement
an approach similar to an inverted index. We use an in-
dex structure that for every label and for every distance
can provide a list of all the nodes that have a label ` at
the respective distance, and the number of edges with
such labels. The index is a hash table, in which keys
are edge labels and values are two dimensional matri-
ces. For a label ` the matrix contains in position i, j all
the nodes n, such that |Wn,`,i| = j, for each j > 0.

Note that, once computed for each label ` and each
i ≤ d, W compactly represents the portion of the graph
around a node. For this reason, if we compute W for
the nodes of the user sample as well, we can compare
nodes in the database and nodes in the user sample, in
order to know in advance which nodes can be pruned.
We denote the d-hop nodes set of a node ns of graph S
by NSd (ns). A node n ∈ N of D : 〈N,E〉 matches a node
nS ∈ Ns in the user sample, and therefore is not pruned,
if the following property holds (ref. to Theorem 1 for a
formal proof).

Property 1 For each label ` and a distance i ≤ d,
|Wn,`,i| ≥ |Wns,`,i|.

Using the ability to compare nodes through the com-
pact representation of the part of the graph around
them, we devise a way of fast eliminating pairs of the
user sample and database nodes, respectively, that do
not participate in an isomorphism match. Traditional
techniques that compute isomorphism find matches of
the different nodes independently and then try to com-
bine them. We show that this process can be optimized
further, if the comparison of the nodes takes into con-
sideration the previously computed matches. To imple-
ment this idea we exploit dual simulation. Note that in
this case, simulation is used to prune nodes in advance
and not as a congruence relation as in Section 6.

10 Davide Mottin et al.

Algorithm 2 IterativePruning
Input: A database D : 〈N,E〉
Input: A user sample S : 〈NS , ES〉
Output: A set of candidate mappings µ ⊆ NS ×N
1: NSd ← d-hop nodes of S
2: Vis ← ∅ . Visited nodes
3: nmin ← arg min

n∈NS
Sel(n)

4: C ← {nmin} . Query candidates
5: µ(nmin)← {n|NSd (nmin) ⊆ Nd(n)}
6: for each ns ∈ C do
7: if ns

`→ n′
s ∈ ES and n′

s 6∈ Vis then

8: µ(ns)← µ(ns) \ {n|n
`

6→ n1, n ∈ µ(ns)}
9: µ(n′

s)← {n1|n
`→ n1, n ∈ µ(ns),NSd (n′

s) ⊆ Nd(n1)}
10: else if n′

s
`→ ns ∈ ES and n′

s 6∈ Vis then

11: µ(ns)← µ(ns) \ {n|n1
`

6→ n, n ∈ µ(ns)}
12: µ(n′

s)← {n1|n1
`→ n, n ∈ µ(ns),NSd (n′

s) ⊆ Nd(n1)}
13: C ← C ∪ {n′

s|ns
`→ n′

s ∨ ns
`← n′

s}
14: C ← C \ {ns}
15: Vis ← Vis ∪{ns}

Deciding whether one graph dual simulates another
graph is known to be solvable in polynomial time with
respect to the size of the graph [22]. The main idea of
our approach is to check if a subgraph can dual simulate
the user sample on the database graph, while iteratively
pruning nodes that cannot possibly match.

5.1.1 Matching Algorithm with Iterative Pruning

The algorithm works as follows. First, it calculates the
d-hop nodes for each node of the user sample. Then, a
user sample node is selected as starting node. Although
any node is a valid starting node we propose to pick the
node with the lowest selectivity among the user sample
nodes, with the hope to reduce the number of candidate
matches between the user sample and database nodes.
The selectivity is an estimate of the number of possible
matches generated from a user sample node. The idea
is to consider the number of adjacent nodes of a user
sample node and the frequency of the labels of the edges
connected to it. The selectivity of a node n is

Sel(n) = freq(n) +
d∑
i=1

1
i

∑
Wn,`,i

|E`|, (1)

where the frequency freq(n) of a node n is defined
as the sum of the number of outgoing and incoming
edges. The selectivity favors nodes in which both the
degree and the frequency of the labels are both high.
Furthermore, the further the edges are from the node n,
the less important the frequencies are, which explains
the i−1 factor.

We similarly define the frequency of a label ` as the
number of edges in the graph having label ` and we

denote it as |E`|. The less probable the combination of
labels at a certain distance is, the lower the selectivity
and the higher is the expected pruning power.

After having selected the starting node nmin, the al-
gorithm retrieves the nodes in the database that match
the node nmin and marks them as candidate mappings
µ(nmin), where µ ⊆ NS × N is the mapping between
user sample and database nodes that the algorithm
will compute. Then the algorithm iteratively checks,
for each user sample node nS not yet visited, that each
adjacent edge of nS matches the edges adjacent to the
nodes n ∈ µ(nS), verifying the label and the direction
of the edge. If it does not match, then n is removed
from µ(nS), otherwise we consider a node n1 adjacent
to n a candidate for the user sample node n′S adjacent
to nS , i.e., we insert it into µ(nS), if the condition de-
scribed by Theorem 1 holds. Finally, the user sample
node nS is marked as visited and removed from the
candidate list. The steps of the algorithm are described
in Algorithm 2.

In the worst case, Algorithm 2 will have to traverse
the entire database for each node. Thus, the complexity
of the algorithm is O(|E|∗(|NS |+ |ES |)). Since the user
sample is typically very small, the algorithm is, for the
majority of practical cases, quadratic to the number of
nodes. In the implementation, in order to reduce the
time computation of µ, we used a hash map for storing
the nodes of the user sample and their partial mappings.

The set of candidate mappings computed by Algo-
rithm 2 is used to eliminate those nodes of the database
that will never participate in an isomorphism with the
user sample nodes.

5.1.2 Algorithm Correctness and Complexity

The following theorem guarantees that Algorithm 2 does
not falsely discard any node while traversing the user
sample nodes. However, it may introduce false positives,
i.e., nodes that match the user sample nodes but are not
included in an isomorphism4.

Theorem 1 Given a database D : 〈N,E〉 and a user
sample S, let Nd and NSd be the d-hop nodes set of D and
S respectively. If there exists a subgraph-isomorphism
µ : NS → N , then ∀nS ∈ NS ,NSd (nS) ⊆ Nd(n), n ∈
N,n ∈ µ(nS)

Proof. (by contradiction) Suppose that (nS , n) ∈ µ, but
NSd (nS) 6⊆Nd(n), then there exists i, 1 ≤ i ≤ d and a la-
bel ` such that Property 1 does not hold, i.e., |WnS ,`,i| >
|Wn,`,i|. For this reason we can say that there exists

4 Note that those nodes will be removed later, when the ac-
tual isomorphic check will be performed.

Exemplar Queries: A New Way of Searching 11

n′S ∈ WnS ,`,i, connected to n′′S ∈ Ni−1(nS) by `, i.e.,
n′S

`→ n′′S . The latter assumption holds since µ is a
subgraph-isomorphism. However, there does not exist
any µ(n′S) `→ µ(n′′S), which contradicts the subgraph-
isomorphism hypothesis.

Additionally, a guarantee that the algorithm is com-
plete, namely it does not discard any simulating answer,
is offered by the following theorem.

Theorem 2 Given a user sample S and a database D :
〈N,E〉, if a node n ∈ N is pruned by Algorithm 2, then
n does not belong to any dual simulation of S in D.

Proof. In order to prove the theorem we need to prove
that a node n discarded by the algorithm cannot par-
ticipate in any simulation of the sample S. Recall that a
node is discarded by Algorithm 2 if one of the following
conditions holds
(a) NSd (n′S) * Nd(n1) (line 9)
(b) nS

`→ n′S , but @n1 s.t. n
`

6→ n1 (line 8)

If (a) holds then it follows immediately from Theo-
rem 1 that the node cannot participate in an isomor-
phism, thus we conclude. Conversely, if (b) holds then
nS has an ` edge, but n does not. In this case, from
the definition of simulation n cannot simulate nS . On
the other hand, node n cannot be part of any other
simulation, since it has been previously considered in a
matching path from nmin to nS . Therefore, there exists
a path in S that is not matched by n. This concludes
the proof.

5.2 An Approximate Solution

In the previous subsection, we describe an exact solu-
tion to prune the search space, removing nodes that
cannot possibly match the user sample. That approach
reduces the total number of isomorphism tests, while
ensuring that all the subgraph-isomorphic graphs (and
only those) will be returned as answers. In this subsec-
tion, we propose an additional method that removes in
advance portions of the graph that are likely to not be
relevant for the user, i.e., not to contain answers that
will be ranked amongst the top-k. The idea is based on
the observation that the user is not always interested
in all the answers, but only in the portion more closely
related to the sample. We call this method ApFastXQ.

We aim at restricting in advance the search space in
order to search for solutions, i.e., to search for isomor-
phic structures, only in the portion of the graph that is
more likely to contain answers that are also the most
relevant for the user. Consequently, some of the solu-
tions will be discarded in advance because they are not

likely to rank among the top-k most relevant answers.
As already mentioned in the previous subsections (Fig-
ure 2), both pairs CBS-Paramount and Yahoo!-Tumblr
are part of the solution space, but the pair Yahoo!-
Tumblr is more relevant to the user, and therefore we
would like to restrict our search only to the subgraph
that is containing the second but not the first.

In the following, we describe how we model this por-
tion of the graph, which we call Query Neighborhood
(Section 5.2.1). This is the subgraph induced by the
subset of nodes with higher proximity to the nodes of
the user sample. The intuition behind this is that nodes
in the graph that are located far from the user sample
will also be semantically distant from the user’s inten-
tion as expressed in the exemplar query. Hence, even
if such nodes will form an answer, such answer will be
considered not interesting by the user.

We model a relatedness measure based on the dis-
tance between nodes in the graph, and we use it to
prune away nodes that are far away from the user sam-
ple before even looking for isomorphic structures among
them.

It is clear that, while the approach described in the
previous subsection (Section 5.1) is exact (i.e., does
not discard any valid answers), this second approach
is approximate: some correct answers could potentially
be filtered out as they fall out of the Query Neighbor-
hood. For this reason, we propose a principled way of
measuring the relatedness and for pruning the graph,
aimed at discarding only irrelevant solutions. We im-
plement the SelectQueryNeighborhood algorithm
that iteratively retrieves the Query Neighborhood with-
out traversing the entire graph (Section 5.2.2). As we
show later (Section 8), by operating in this special por-
tion of the graph, we can effectively reduce the search
space. The restricted search space can then be given as
input to XQ (Algorithm 1), without affecting in prac-
tice the quality of the results. We can still apply on this
subgraph the pruning techniques presented in the previ-
ous subsection and then look for isomorphic structures
on a much smaller database. Hence, the ApFastXQ
algorithm first applies the SelectQueryNeighbor-
hood algorithm and then FastXQ.

5.2.1 Identifying Relevant Answers

Given the set of exemplar answers Q = xmpEval(Qe),
we aim at restricting our search to the subset Qρ ⊆ Q

that contains only the answers that are more relevant
to the user, i.e., those that are more likely to rank
among the top-k when considering the ranking func-
tion ρ. Since the only evidence of the user’s intent is
the input query Q and the corresponding user sample

12 Davide Mottin et al.

Fig. 4: A visualization of APPV

Algorithm 3 SelectQueryNeighborhood
Input: User Sample S : 〈NS , ES〉
Input: Database D : 〈N,E〉
Input: Teleportation probability c
Input: Threshold τ
Output: Subgraph D′ ⊆ D
1: Ā← AdjacencyNormalized(D,S)
2: p← [0]×N
3: for each qi ∈ NS do
4: p[qi]← 1/|NS |
5: v ← ComputeAPPV(Ā,p, c, τ)
6: ND′ ← Nearest(N, v)
7: D′ ← GetSubgraph(D,ND′)
8: return D′

S, we assume a measure of relevance ρS of each answer
to the sample.

Definition 8 (Relevance Measure) Given a user sam-
ple S, the relevance measure ρS is a function ρS :
Q 7→ R+ that, given an answer A ∈ Q, returns the
relevance ρS(A) of A to S.

Note that given a second answer A′ ∈ Q, if ρS(A) >
ρS(A′), then we say that A is more relevant than A′

with respect to S. We can now define the set of relevant
exemplar answers as

Qρ = {A ∈ Q | ρS(A) > τ} (2)

where the threshold τ > 0 is data dependent, and can
be provided by the user. The idea is that Qρ should
then contain the top-k answers.

Since Qρ is a set of subgraphs of D, we say that
the set of solutions Qρ is contained in the subgraph
Dρ ⊆ D, which is any subgraph of D that contains all
the relevant exemplar answers Qρ, and none of the re-
maining irrelevant exemplar answers Qρ = Q\Qρ. This
portion of the graph is the subgraph induced by the
subset of nodes Nρ ⊆ N , called the relevant nodes. In
the following, we assume that for an answer to be con-
sidered relevant, all its nodes should be relevant, i.e.,
they should satisfy the minimum relevance threshold

τ (otherwise, we would be admitting answers that are
only partially relevant).

Therefore, we consider a relevance measure ρNS :
N 7→ R+ to be applicable to any node in the graph.
Then, relevant nodes are the nodes whose relevance
measure is above the threshold τ , i.e., Nρ = {n ∈
N |ρNS (n) > τ}. Hence, an answer A is relevant when
all its nodes are relevant. In practice, we first identify
the set of relevant nodes Nρ, and then we use only these
nodes to construct the subgraph Dρ ⊆ D.

In our solution, we implement ρNS as a distance
measure on the graph, measuring the distance of every
node from the nodes of the sample NS , and we keep
only nodes that are within a certain distance threshold
from the sample. For this reason, we call Dρ the Query
Neighborhood of the sample S. In order to compute this
distance we propose the Adaptive Personalized PageR-
ank Vector (APPV), an extension of the Personalized
PageRank Vector (PPV), designed to exploit the prop-
erties of our problem. This is implemented by the Se-
lectQueryNeighborhood in Algorithm 3.

5.2.2 The SelectQueryNeighborhood Algorithm

Our solution models the computation of the Person-
alized PageRank Vector (PPV) [25] which is used as
an estimate of the distances of the nodes in the graph
from the subset of nodes in the user sample. In the lit-
erature Personalized PageRank (PPR) [21,25] is a well
known technique that computes the PageRank biased
towards the preferences of the user. The problem is de-
fined as follows: given an input graph G : 〈N,E〉 with
|N | vertices, and a preference vector p ∈ R|N |, output
the PPV v ∈ R|N | containing the PPR scores for all ver-
tices of G with respect to the preference vector p. We
use p[n] to denote the personalized preference value for
node n ∈ N , and v[n] to denote its PPR score. In our
case, user preferences are expressed through the query
Q and for this reason we initialize the preference vec-
tor according to the nodes in the user sample S, which
models the query Q in the database. Finally, we say
that the relevance measure ρNS (n) of a node n is its
corresponding Personalized Page Rank value v[n].

The main difference between the original PPV model
and our solution, APPV, lays on the semantic of edges.
Traditionally, edges between nodes are treated equally
as they usually represent just a link from one webpage
to another (i.e., they are all of the same kind). In con-
trast, our model adapts to the various edges and their
labels, according to S. In particular, the edges in our
model may represent different kinds of relationships.
It is therefore natural to differentiate transition prob-
abilities based on the information carried by each sin-
gle edge, as some relationships are more informative

Exemplar Queries: A New Way of Searching 13

Algorithm 4 ComputeAPPV
Input: Adjacency Matrix Ā
Input: Node vector p
Input: restart probability c
Input: threshold τ
Output: Approximate APPV v
1: for each qi ∈ p do
2: p[qi]← p[qi]× 1/τ
3: v ← p
4: while ∃ ni ∈ p | p[ni] 6= 0 do
5: aux← [0]
6: for each ni ∈ p | p[ni] 6= 0 do
7: particles← p[ni]× (1− c)
8: for each ni → nj ∈ D (Sort by Āij Desc.) do
9: if particles ≤ τ then

10: break
11: passing ← particles× Āij
12: if passing ≤ τ then
13: passing ← τ

14: aux[nj]← aux[nj] + passing
15: particles← particles− passing
16: p← aux
17: for each ni ∈ p do
18: v[ni]← v[ni] + p[ni]
19: return v

than others [11,48]. Moreover, labels that do appear in
the user query should be given more importance when
computing the PageRank, since they represent the user
preference. Figure 4 depicts the output of the compu-
tation on the graph of our running example. Here all
the nodes have been assigned the weights from the final
APPV, computed using the set of nodes in the sample
as initial preferences. The set Nρ, which satisfies the
selectivity requirement, consists of nodes with APPV
score higher than a minimum threshold τ , 0 < τ < 1.

To compute the transition probabilities in the APPV
model, assume a graph model of the databaseD : 〈N,E〉,
and let AD be the adjacency matrix of this graph. If |N |
is the number of nodes in the database, then AD is an
|N | × |N | square matrix. In this matrix, we have that
0 < ADij ≤ 1 if and only if the node i has a relationship
e`ij with node j with label `; otherwise, we have ADij = 0.
In this way, the element ADij models the amount of in-
formation that is transferred from node i to node j by
the edge e`ij as a function of its label `. In our solu-
tion, the values in AD are proportional to the amount
of information [42] carried by the edge e`ij , which is:

I(e`ij) = I(`) = log 1
P (`) = − logP (`) (3)

P (`) =
∣∣E`∣∣
|E|

(4)

where E` is the set of edges with label `. Note that the
frequency of a label can be easily pre-computed.

In order to account for the importance of the edges
in the user sample, we additionally define matrix AS ,
which is constructed from the adjacency matrix of the
database, but where only entries for edges whose label
appears also in S are assigned a non-zero value. In other
words, we construct an |N | × |N | square matrix with
0 < ASij ≤ 1 if the nodes i and j are connected by
an edge and that edge has a label ` that appears as
label of one edge in the user sample S, and with ASij=0
otherwise.

We then combine the two matrices into the matrix
Ā = AD +AS and normalize it. Under this transforma-
tion Ā becomes the transition probability matrix for the
knowledge-base graph, where more relevance is given
to edges carrying more information, as well as to edges
with labels that appear in the query. We also define
p, an |N | × 1 column vector, which serves as the nor-
malized preference vector, for which p[n] 6= 0 and in
particular 0 < p[n] ≤ 1 iff n ∈ NS . Given the col-
umn normalized transition probability matrix Ā, the
teleportation probability c, and the preference vector
p, our technique adheres to the Personalized PageRank
semantics [11, 25]. Thus, the APPV v is defined as the
stationary distribution of the Markov chain with state
transition given by the matrix

(1− c)Āv + cp (5)

where the teleportation probability c ∈ (0, 1) is typically
≈ 0.15, with small changes in this value having little
effect in practice [38].

The exact computation of this vector typically re-
quires O(|N |2) time and space. Performing the compu-
tation through power iteration requires O(|N |t) time,
where t is the number of iterations to be performed.
Nevertheless, this computation is still not practical for
very large graphs.

In order to compute this value fast, we extend the
template proposed for other approximations of this pro-
cess [3] and apply an approach similar to the weighted
particle filtering procedure [30], but extended to cor-
rectly take into account the teleportation probability,
and to consider the non-uniform edge weights that we
previously introduced, as shown in Algorithm 4.

Algorithm 4 simulates a set of 1/τ floating particles
(line 2) starting from each node with a non-zero value
in p. At each iteration (lines 6-15), they split among
the neighbors of the node they are currently visiting,
but we prevent them to split to arbitrarily small sizes,
limiting them to a minimum size τ (lines 12-13). When
spreading the particles among the neighbors, the algo-
rithm gives preference to the edges with higher weights.
The restart probability c will dissipate part of the par-
ticles at every iteration (line 7), and the algorithm will
stop when no more particles are floating around.

14 Davide Mottin et al.

At the end of the algorithm, we return the APPV
containing the scores that have been accumulated through
each iteration on every node. We then keep the subset
of the graph containing only those nodes with a score
higher than some threshold and the edges connected
to them (line 6-7 in Algorithm 3). Since we are deal-
ing with an iterative approximation, we keep only those
nodes that have been visited by at least one particle,
which means that we discard all nodes, whose value is
not greater than τ .

6 Finding Simulating Answers

In its original formulation, strong simulation is node-
label preserving [32], meaning that the query and the
database have labels on the nodes (instead of the edges).
On the contrary, our definition is strictly based on edge
labels: we require to preserve the relationships among
nodes, ignoring node labels. The adaptation of strong
simulation from node-label preserving to edge-label pre-
serving is possible, albeit non-trivial. We discuss the
details in the following paragraphs. We also show that
it is possible to use the same strong simulation algo-
rithms [5] in our setting. The solution we propose starts
with the translation of our graph into an expanded graph.

Definition 9 (Expanded Graph) For a given graph
G : 〈N,E〉 the expanded graph is a graphG+ : 〈N+, E+〉,
where each n1

`→ n2, (n1, n2) ∈ E is substituted with
two edges n1 → n` and n` → n2, where n` is a new
uniquely identified node with label `. The path n1 →
n` → n2 is called expanded edge and n` is called edge-
node.

Clearly, N+ = N ∪ {n` | ∃ n1, n2 ∈ N,n1
`→ n2}

and E+ = {(n1, n
`), (n`, n2) | n1, n2 ∈ N ∧ n1

`→ n2}.

n1 n2
` n1 ` n2

Fig. 5: An edge (left) and its expansion (right).

Figure 5 represents an edge n1
`→ n2 and its cor-

responding expansion. Note that nodes n1 and n2 in
the expansion have no labels. We now prove that the
definition of dual simulation [32] is equivalent to ours
when applied to the expanded graph. Recall that in a
node-labeled graph, simulation is defined as follows.

Definition 10 (Node-label dual simulation) A node-
labeled graph D1 : 〈N1, E1〉 dual simulates another
graph D2 : 〈N2, E2〉, denoted as D1 END D2, if there

exists a relation R, such that for each (n`1, n`2) ∈ R:
(1) for all n1 → n′1, exists n′2 such that n2 → n′2 and
(n′1, n′2) ∈ R, (2) for all n′′1 → n1, exists n′′2 such that
n′′2 → n2 and (n′′1 , n′′2) ∈ R.

We need to prove that edge-label strong simula-
tion is equivalent to node-label simulation on expanded
graphs. We first prove the following lemmas.

Lemma 1 Given two databases S : 〈NS , ES〉 and D :
〈N,E〉, S ED D ⇔ S+ END D+.

Proof. The structure of the proof is as follows. We prove
both directions separately constructing another dual
simulation starting from the one existing by hypoth-
esis.
(⇒): Given a dual simulation relation RD from s to D
we construct a relation

R′D = RD ∪R+
D,

whereR+
D = {(s`, n`) | s`∈N+

S , n
`∈N+,(s1, n1), (s2, n2)∈

RD ∧ s1
`→ s2, n1

`→ n2}. Note that for the generality
of s1, s2, n1, n2, R+

D contains edges in both directions.
R′D is, in fact, a dual simulation from S+ to D+. Sup-
pose R′D is not a dual simulation, then it must exists
s ∈ N+

S such that for any n ∈ N+, (s, n) /∈ RD. We
have two cases:
(1) s ∈ N . This is a contradiction, since RD is a dual
simulation it exists n, such that (s, n) ∈ RD.
(2) s ∈ N+ \N . This means that s is an edge-node and
exists a label ` and s1, s2 ∈ NS , such that s1

`→ s2. By
hypothesis exists n1, n2 ∈ N such that (s1, n1) ∈ RD,
and (s2, n2) ∈ RD. However, in the expanded graph
we have n1 → n` → n2, implying that (s`, n`) ∈ R′D
contradicting the hypothesis.
(⇐): The proof is similar to the forward arrow, noticing
that RD = R′D \ R

+
D, and will be omitted.

We are now ready to prove the following Theorem.

Theorem 3 Given two databases S : 〈NS , ES〉 and D :
〈N,E〉, S ES D ⇔ S+ ENS D+.

Proof. Recall that from Definition 7, two graphs are
strongly similar if there exists a node n ∈ N and a
d−graph D[n, d] such that (1) d is equal to the di-
ameter of S, and (2) S ED D[n, d] with the maximal
dual simulation. If S ES D, by Lemma 1 follows that
S+ END D+[n, d] and it easy to see that d is the di-
ameter of S+. It also flows that S+ END D+[n, d] with
the maximal relation, since the relation, as defined in
Lemma 1 contains all the pairs plus the pairs included
in the expanded edges.

Exemplar Queries: A New Way of Searching 15

 SelectQueryNeighborhood
(Algorithm 3)

 Isomorphism
 (Algorithm 1)

 IterativePruning
 (Algorithm 2)

 SelectQueryNeighborhood
(Algorithm 3)

 IterativePruning*
 (Algorithm 2*)

 StrongSimSearch
 (Algorithm 5)

APFASTXQSIM FASTXQSIM XQSIM

APFASTXQ FASTXQ XQ

Fig. 6: The proposed algorithms and how they combine.

Algorithm 5 StrongSimSearch
Input: User database D: 〈N,E〉
Input: User sample S
Output: Set of simulating answers Q
1: D+ ← Expand(D)
2: S+ ← Expand(S)
3: Q← ∅
4: Q+ ← Match(D+, S+) . Algorithm from [32]
5: for each q+ ∈ Q+ do
6: Q← Q ∪Contract(q+)

Theorem 3 states that it is sufficient to run the
Match algorithm from [32] on an expanded graph, and
then remove all the edge-nodes and the matching from
the expanded graph to obtain valid strong-simulating
results for the original graph. Algorithm 5 shows the
pseudocode of the strong-simulation algorithm. First,
the graphs S and D are expanded using the proce-
dure Expand (Line 1,2); then, the Match algorithm is
used to find strong-simulating answers Q+ in the ex-
panded graphs S+ and D+ (Line 4). Finally, all the
results in Q+ are contracted using the Contract func-
tion to remove the expanded-edges (Line 5-7).

Algorithm complexity: The Match algorithm on D+

runs in O(|N+|(|N+| + (|N+
s | + |E+

s |)(|N+| + |E+|)))
as shown in [32]. Since the size of the user sample is
small, |N+

s | is bounded by a small constant and we
can consider Match to run in O(|N+|(|N+| + (|N+| +
|E+|))). On the other hand, |N+| = |N |+ |E| since for
each edge we add a node and |E+| = 2|E|. Therefore,
since both Expand and Contract execute in O(|E|)
time, the overall complexity is dominated by Match,
which runs in O(|N |4) for expanded graphs.

Applying pruning techniques: Algorithm 5 works
with any kind of graph, but expanding the entire database
may be time consuming. A legit question then is whether
IterativePruning can be applied with simulation.
Indeed, this is possible by relaxing the constraint in
Property 1. It easily follows from Theorem 1 and Def-
inition 5 that in a database D : 〈N,E〉, a node n ∈ N
matches a node ns ∈ Ns in the user sample S, so it is

not pruned, if for each label ` and a distance i ≤ d, if
|Wns,`,i| > 0 then |Wn,`,i| > 0. We refer to this algo-
rithm as IterativePruning∗.

We call FastXQSim the algorithm that derives from
XQ when instantiated with the StrongSimSearch
congruence relation described in Algorithm 5 and the
pruning algorithm IterativePruning∗.

Regarding the restriction of the search space pre-
sented in Section 5.2, we note that no changes are needed
to SelectQueryNeighborhood. Therefore, for the
case of strong simulation, we can use the ApFastXQ
algorithm by first applying the SelectQueryNeigh-
borhood algorithm presented above, and then
the FastXQSim with IterativePruning∗. We refer
to this new algorithm as ApFastXQSim.

7 Solution Workflow

In the following, we first summarize how the various al-
gorithms we have presented combine to solve our prob-
lem. Then we explain how we can rank the results pro-
duced by these solutions, and present the user with the
top-k among them.

7.1 Choice of algorithms

The first solution (refer to Figure 6) is to adopt the
exact and exhaustive XQ algorithm (Algorithm 1). In
Algorithm 1, we can either instantiate the FindSimi-
larSubgraphs function with an exploratory isomor-
phic search, or use strong simulation by replacing lines
3-9 with StrongSimSearch (Algorithm 5) to obtain
the XQSim algorithm.

In order to improve the running time of XQ and
XQSim, we first prune the search space by applying
IterativePruning (Algorithm 2) and its variation
IterativePruning∗, respectively. This leads to the
FastXQ and FastXQSim algorithms, respectively,
which are both exact, i.e., the final list of top-k results
corresponds to the actual top-k exemplar answers.

A further improvement in terms of time performance
is possible using the SelectQueryNeighborhood
function (Algorithm 3). This function can be used with-
out changes with both isomorphism and strong simula-
tion, and leads to the ApFastXQ and ApFastXQSim
algorithms, respectively. In this case, we are just re-
ducing the total amount of subgraph isomorphism (or
simulation) checks needed, but all answers returned are
still the result of an exact isomorphism (or simulation).
These algorithms simply trade-off effectiveness for effi-
ciency, returning a meaningful subset of the results.

16 Davide Mottin et al.

7.2 Ranking Query Answers

Once the answers have been computed from the user
sample, they need to be ranked in order to either be
returned sorted to the user that posed the query, or
to select only the k most promising candidates, i.e., the
top-k. To do this, we introduce a novel ranking function
that is a linear combination of two scores, namely, the
structural similarity score S based on the d-hop nodes
set and the amount of information as provided by the
APPV vector, which indicates the relevance of nodes
with respect to the sample nodes. The score of each
answer is computed by using the above two parameters
to compare the answer to the user sample.

Most node similarity measures proposed in the lit-
erature are based on the concept of graph similarity
and isomorphism. This is the case for Graph Edit Dis-
tance [18], which is computed with a reduction to graph
isomorphism, and is therefore inapplicable to our prob-
lem, due to its high time complexity. A different method
is proposed in [28] and is based on a vectorial repre-
sentation of nodes. This idea seems suitable for our
settings, thus we extended it in order to capture the
differences among nodes that emerge when taking into
account the edge-labels connecting the d-hop nodes. We
also embed distance information aiming at giving dif-
ferent weights to nodes based on their distance from the
sample (for the reasons presented in Section 5.2). Thus,
for every node n we build a vector containing a value
for every label ` ∈ L in the graph, and we compute this
score as

σ(n, `) =
d∑
i=1

I(`)|Wn,`,i|
i2

(6)

The value I(`) represents the amount of information [42]
described in Section 5.2.2 - Equation 3 which quanti-
fies the importance of an edge-label. The i2 term is a
quadratic decay factor for the importance of an edge at
distance i from the current considered node. Intuitively,
the further you go from the node the less important is
the edge you encounter.

Given the vectorial representation of two nodes, we
compute the node similarity S using a metric for vec-
tors, such as the Jaccard, euclidean distance or cosine
similarity. Note that our vectorial representation con-
tains already the computed score σ. In our experiments
we use cosine similarity, but any other similarity metrics
can also be used. Therefore, the structural similarity be-
tween a node ns of the user sample and any matching
node n is computed as follows:

S(ns, n) =

∑
`∈L

σ(ns, `)σ(n, `)√∑
`∈L

σ(ns, `)2
√∑
`∈L

σ(n, `)2
(7)

The structural similarity above does not take into
account the proximity of the results to the user sample.
Therefore, we consider a linear combination, parametrized
by λ, between the node similarity (structural) and the
APPV (proximity) as follows.

ρ(ns, n) = λS(ns, n) + (1− λ)v[n] (8)

where v[n] is the APPV defined in Section 5.2.1. We
then compute the average of ρ(ns, n) over the number of
nodes matching the user sample nodes in the similarity
relation R, and sum over all nodes in the sample:

ρ(S,R) =
∑

ns∈NS

(∑
n∈R(ns) ρ(ns, n)
|R(ns)|

)
(9)

Note that the choice of λ (in Equation 8) is data
dependent. A value λ close to 1 favors results that share
more edges with the d-hop nodes of the user sample. On
the other hand, a value close to 0 will take into account
only solutions that are close to the original query. For
this reason, we can see λ as a diversification parameter
that depends on both the user and the data. This is also
the approach taken by most diversification models [1].

7.3 Top-K Answering with TopKXQ

The approximate approach presented above first com-
putes all the answers within the Query Neighborhood
and then ranks them. Hence, answers outside this neigh-
borhood are disregarded. Although this approach is par-
ticularly suited when the most relevant answers are ex-
pected to be close to the user sample, it might not find k
answers in case the relevance threshold τ is set too low.
The only answers that will be incorrectly discarded by
applying the APPV approximation are those that are
far away from the sample, but still achieve structural
similarity higher than the proximity value of all the
answers near the sample. Even though in practice the
number of answers lost is negligible (refer to Section 8),
in what follows we propose a more rigorous approach.

The key idea is to implement an exact top-k algo-
rithm that we call TopKXQ, which explores the graph
until k answers are found, and all the other candidate
answers are guaranteed to be worse (i.e., rank lower)
than those. This algorithm is based on the computation
of an upper bound on the ranking value for the answers
that have not been considered so far. It implements an
iterative process that explores the graph around the
sample in circles of increasing radius. Starting from an
empty answer-set, the algorithm finds answers that are

Exemplar Queries: A New Way of Searching 17

Algorithm 6 TopKXQ
Input: User Sample S : 〈NS , ES〉
Input: Database D : 〈N,E〉
Input: diversification factor λ
Output: Sorted List of relevant answers Q
1: Dρ ← S
2: tempSim← 0
3: do
4: Dρ ← ExpandQueryNeighborhood(S,D,Dρ)
5: Q ← FindSimilarSubgraphs (S,Dρ)
6: Q← Rank(Q)
7: if |Q| < k then
8: continue
9: R← Q[k]

10: tempSim← λ
∑

ns∈Ns
1

|R(ns)|
∑

n∈R(ns)
S(ns, n)

11: while tempSim < λ·UpperBound(S,D,Dρ)
12: Q← Rank(Q)
13: return Q

Algorithm 7 UpperBound
Input: User Sample S : 〈NS , ES〉
Input: Database D : 〈N,E〉
Input: Current neighborhood Dρ : 〈Nρ, Eρ〉
Output: highest upper bound
1: Ř ← new Rel()
2: for each ns ∈ NS do . Find best scoring nodes
3: Ř(ns)← argmaxn∈N\Nρ S(ns, n)
4: return

∑
ns∈Ns

∑
n∈Ř(ns)

S(ns, n)

progressively further away from the sample. The search
stops when the upper bound of any remaining candi-
date answer is lower than the value of the lowest ranked
answer in the top-k candidates. Thus, this approach en-
sures that there are no false negatives.

7.3.1 Computing an Upperbound for Top-K Answering

The stopping condition of the algorithm determines
what is the highest score that can be obtained if an
answer exists outside the nodes explored so far, and
compares it with the score of the current k-th answer.
To devise an upper bound on the rank value of the
nodes, we note that Equation 9 can be rewritten as

λ
∑
ns∈NS

∑
n∈R(ns)

S(ns,n)
|R(ns)| + (1− λ)

∑
ns∈NS

∑
n∈R(ns)

v[n]
|R(ns)|

In this equation, we observe that the second term
depends on the position of the answer with respect to
the user sample, since it is averaging over the APPV
values of the nodes in the answer. As such, it decreases
proportionally to the distance of an answer from the
user sample. Therefore, answers outside the current neigh-
borhood necessarily achieve lower scores for this value.

On the other hand, the first term takes into account
the structural similarity between each node in the query
and each corresponding node in the answer. Thus, it
depends only on the labels of edges around the two.

Given the above two observations, we can compute
the maximum value for the similarity score achievable
by any candidate answer outside the current neighbor-
hood. In particular, given a sample S we compute an
upper bound for the structural similarity value S(ns, n)
between all nodes ns ∈ Ns and n ∈ N \Nρ, where Nρ
is the set of nodes in the current portion of the graph,
where answers have already been computed.

Therefore, the sum of the best structural similar-
ity value for each sample node is the highest possible
structural similarity achievable by an answer outside
the neighborhood.

We then use this value to determine if there exists
any candidate answer NS ⊆ N \ Nρ, such that the
value of

∑
n̄s∈N̄S S(ns, n̄s) is high enough to fall into

the top-k answers. The application of the neighborhood
algorithm produces only answers for which all nodes are
within the distance measure, hence answers that are
not completely contained in the neighborhood would
be discarded. Thus, for the stopping condition to be
correct, we take into account also answers that lie across
the boundary of the current neighborhood.

7.3.2 The TopKXQ Algorithm

The above process is described in Algorithm 6, Top-
KXQ, which starts by expanding the Query Neighbor-
hood and searching for answers in that portion of the
graph. Then, if less than k answers are found, the algo-
rithm proceeds by expanding further the neighborhood.
The expansion process is similar to what is presented in
Algorithm 3, by using decreasing values for the thresh-
old τ . Then, it also performs a BFS exploration follow-
ing only edges with labels appearing in the query, in
order to include borderline solutions. Eventually, when
k or more answers have been found, the algorithm com-
putes the upper bound for the structural similarity that
can be obtained outside the current Query Neighbor-
hood. The search only continues in the case where a
better answer may exist, i.e., when the score for the
k-th answer is lower than the computed upper bound.

The UpperBound method is described in Algo-
rithm 7. This function retrieves the node n̄ ∈ N \ Nρ,
with the highest similarity value S(ns, n̄), for each node
ns in the sample S. Formally, given a node ns ∈ NS ,
n̄ = argmaxn∈N\Nρ S(ns, n).

With such nodes, it builds a mock solution that
maximizes the structural similarity score, while con-
taining only nodes that are outside the current neigh-
borhood. The computation can be improved further
considering only nodes in N \ Nρ that are connected
by edges with the same labels appearing in the sample.

18 Davide Mottin et al.

 ExpandQueryNeighborhood
(Algorithm 3*)

 IterativePruning
 (Algorithm 2)

TOPKXQ

 Isomorphism
 (Algorithm 1)

CHECKUPPERBOUND
 (Algorithm 7)

Fig. 7: A visualization of the TopKXQ algorithm.

Figure 7 depicts the TopKXQ algorithm, based on
the graph isomorphism congruence relation. If we want
a version of the algorithm for the strong simulation con-
gruence relation, then we simply have to replace algo-
rithms 1 and 2 with algorithms 5 and 2*, respectively.
Note that TopKXQ is an optimal algorithm: it always
produces the correct top-k answers.

8 Experimental Evaluation

In this section, we experimentally validate our solution
by measuring its performance and comparing it to other
approaches.
Queries: We extracted 100 real queries entailing a user
need expressible with an exemplar query from the AOL
query log5, and mapped them to the knowledge base6.
Words in each query were manually associated to the
most appropriate node, and relationships were similarly
translated into an edge, or a path. An example of such
a mapping can be seen in Table 1.

Furthermore, we built 100 synthetic queries by se-
lecting 100 nodes at random among those that have at
least 2 outgoing, or ingoing edges. Then, we run for
each of them one undirected random walk with restart
with teleportation and halting probability sampled be-
tween 0.05 and 0.35. In our experimental evaluation,
we used these queries in addition to the 100 queries
from the AOL log, for a total of 200 queries. The sam-
ples obtained in this way are highly heterogeneous in
terms of size and frequency of edge labels. Each query
has between 2 to 11 edges and diameter up to 10, with
more than 200 different edge labels overall in each set,
while the average diameter is 2.8, in line with real-world
queries [17]. In order to test our algorithms with differ-
ent query shapes, we made sure our queries contain cy-
cles, single paths, trees, and complete graphs. Although
we have used both the AOL queries and the 100 syn-
thetic queries, we report only the chats for the AOL
queries, since the results of the experiments on both
sets are almost identical.

5 http://www.gregsadetsky.com/aol-data
6 List of queries: http://www.mi.parisdescartes.fr/

˜themisp/exemplarquery-ext/

Datasets: We downloaded the full Freebase knowledge-
base [20] in April 2014, obtaining a connected graph of
76M nodes and 314M edges, with about 4.5K distinct
edge types. We refer to this dataset as Real. To the best
of our knowledge this is the biggest graph used in this
context in the literature, and the first time that the
entire Freebase graph is used for this purpose. While
related works [28, 46, 49] use a small part of Freebase,
we explored solutions that scale to its full size. Based
on Real we generated 10 synthetic datasets, embed-
ding 20 samples of the test set in different points of the
graph: we performed a breadth first traversal from a
fixed starting node and randomly chose to embed an
answer according to a distribution that decreases expo-
nentially with the distance from the starting node (thus
modeling answers at varying distances). For the scala-
bility tests, we generated graphs having 0.5M, 1M, 5M,
10M and 20M nodes, and 1K embedded queries. We de-
note them as GSize-x, where x is the graph size. Sim-
ilarly, we generated graphs with 10M nodes, and 0.5K,
1K, 2K, 5K and 10K embedded answers. We denote
them as QSize-x, where x is the number of generated
answers.
Experimental Setup: In our experiments, we use d =
2 since we verified that it leads to low memory require-
ments for storing the d-hop nodes set, without sacri-
ficing time performance (see Section 8.3). We also ob-
served that λ = 0.3 (see Section 7) is a good compro-
mise for retrieving diverse and qualitative results. In
Section 8.4, we study the effect of varying the thresh-
old parameter τ (see Section 5.2.2), for which we set the
default value to 0.003. All the reported results are aver-
ages over 5 consecutive runs. We implemented our solu-
tion in Java 1.8, and ran the experiments on a i686 Intel
Xeon E52440 2.40GH machine with 12 Cores in hyper-
treading and 188Gb RAM, over Linux kernel v3.13.0.
The graphs are loaded into main memory using our
graph library available under open source license7.

Query:
infectious disease sexual transmission and prevention
Nodes:
HIV/AIDS; Condom; Sex; Unsafe sex;
Edges:
HIV/AIDS −disease/prevention factors → Condom
HIV/AIDS −disease/risk factors → Unsafe sex
HIV/AIDS −disease/transmission → Sex

Table 1: Mapping of the keyword query “infectious dis-
ease sexual transmission and prevention” into an exem-
plar query.

7 https://github.com/mutandon/Grava

http://www.gregsadetsky.com/aol-data
http://www.mi.parisdescartes.fr/~themisp/exemplarquery-ext/
http://www.mi.parisdescartes.fr/~themisp/exemplarquery-ext/
https://github.com/mutandon/Grava

Exemplar Queries: A New Way of Searching 19

0	

20	

40	

60	

80	

100	

none	
 EQ-­‐
Graph	

Query	

Reform.	

Ex.	

Query	

Pr
ef
er
en

ce
s	
 (
%
)	

Fig. 8: Comparison of methods applied to the Exemplar
Query task.

Implemented Algorithms: Apart from FastXQ, Ap-
FastXQ, FastXQSim and ApFastXQSim, we imple-
mented three additional algorithms from related works:
QueryReformulation: An algorithm that produces query
reformulations by mining sessions from query logs in
a term-level fashion [47]. The model is trained on the
AOL query log and the suggestions are based on our
query test set.
EQ-Graph: Entity-query graph is a model that computes
serendipitous suggestions starting from entity mentions
in a page [10]. For our queries to work in this setting, we
associated to each node the corresponding Wikipedia
page (or the best Wikipedia page that represents the
node). The model is trained on a big query log from
the Yahoo! Search Engine.
NeMa: This algorithm [29], and other previous works,
are based on the assumption that there exists a truly
small set of correct answers to a graph query, which is
not true in our case. Therefore, we implemented their
technique taking into account edge label matches in-
stead of node matches. The authors kindly provided us
a C++ implementation (compiled using gcc v4.4.3).
Summary of Results: Our user studies demonstrate
that 92% of the users believe that exemplar queries are
relevant and useful for search tasks, and that existing
approaches are not able to provide effective solutions
to our problem. The user studies also show that our
method identifies meaningful results with 81% preci-
sion. We observe that the IterativePruning algo-
rithm leads to graphs up to 80% smaller, decreasing
the running time by 30%, with even higher improve-
ments when we choose starting nodes with low selec-
tivity. Overall, more than 50% of the queries take less
than 1 second for τ ≥ 0.003. The set of results measur-
ing performance demonstrate the scalability of our ap-
proach to the largest knowledge-graph available in the
field (76M nodes, 314M edges), while maintaining in-
teractive response times. Finally, the results show that

strong simulation leads to richer answer sets than iso-
morphism, retrieving 34% more nodes (i.e., entities).

8.1 Usefulness

In order to assess the quality of the proposed solution,
we conducted the following user study. We used Ama-
zon Mechanical Turk (http://mturk.com), and asked
94 users (with no restriction with respect to education
level, age and country) to evaluate our system. For each
query in the test set, we provided an explanation of the
topic, the query intention, and the top-10 results in our
answer set obtained using isomorphism as congruence
relation and ranked according to our ranking function.
We asked each user to rate each result as irrelevant,
weakly related, or very related with respect to the topic
and the expressed query intention. Each user evaluated
between 2 to 10 queries (on average 8).

The users provided 4540 marks in total (see Fig-
ure 9): 81% of our results are marked as relevant (weakly
or strongly) and only 19% of them are not considered
relevant suggestions. Out of the 427 suggestions we pro-
duced, 172 (40%) are judged highly relevant by more
than 50% of the users, while each exemplar query con-
tains at least one relevant (weakly or strongly) result
for 99% of the users. Note that the answers judged ir-
relevant were still graphs with the same structure of the
user query, but were simply not related enough to the
specific user information need.

Moreover, each user expressed her opinion with re-
spect to (a) the idea of using examples as a search
paradigm, (b) whether she already had the need of
searching using exemplar queries, and (c) the usefulness
of the system in general. As shown in Figure 10, 92%
of the users considers the exemplar queries paradigm
and the overall system useful for retrieving additional
and relevant information. Moreover, 62% of the people
interviewed declared that they already had the need to
perform this kind of exemplar queries search in the past
(but there was no system to support them).

8.2 Comparison to Previous Work

In the following we compare our method against two
different approaches: (a) algorithms that produce re-
lated queries, and (b) an approximate query answering
technique for graphs.
Related Queries: We implemented and compared with
the methods QueryReformulation and EQ-Graph men-
tioned earlier, through a user study similar to the one
presented in Section 8.1. For each query in the test set,
we presented to users three groups of suggestions: one

http://mturk.com

20 Davide Mottin et al.

0%	

20%	

40%	

60%	

80%	

100%	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10
	

11
	

12
	

13
	

14
	

15
	

16
	

17
	

18
	

19
	

20
	

21
	

22
	

23
	

24
	

25
	

26
	

27
	

28
	

29
	

30
	

31
	

32
	

33
	

34
	

35
	

36
	

37
	

38
	

39
	

40
	

41
	

42
	

43
	

44
	

45
	

46
	

47
	

48
	

49
	

50
	

Irrelevant	
 Weakly	
 Related	
 Very	
 Related	

Fig. 9: Percentage of relevant and irrelevant results per query.

0%	

20%	

40%	

60%	

80%	

100%	

Ex.	
 Query	

paradigm	

Ex.	
 Query	

need	
 	

Overall	
 sys.	

usefulness	

Sa>sfied	
 Dissa>sfied	

Fig. 10: Percentage of satisfied and
dissatisfied users.

0.001	

0.01	

0.1	

1	

10	

100	

1000	

10000	

0	
 50	
 100	
 150	

Ti
m
e	

(s
)	

Size	
 of	
 graph	
 (k)	

NeMa	

ExemplarQueries	

Fig. 11: Time vs Size of graph with NeMa and our ap-
proach (Real dataset).

produced with our method, and one produced by each
one of the two methods above. We then asked users
which of the three groups of suggestions they consid-
ered the most helpful for each query task.

The results, depicted in Figure 8, show that in 64%
of the cases the users preferred our solution to the other
two. Furthermore, for 78% of the queries that received
more than 2 marks, the majority of users preferred our
solution. In 18% of the cases none of the proposed solu-
tions were satisfying, neither the answers proposed by
our model nor those produced by the other algorithms.
Overall, the two competing approaches together were
preferred by less than 30% of the users, none of them
choosing the two approaches in all the queries.
Approximate Query Answering on Graphs: We
now present the comparison between our approach and
NeMa [29], a state of the art technique for answering
approximate queries on graphs. Since on Real a single
query takes NeMa more than 13 hours to process, we
test NeMa on graphs obtained after applying Select-
QueryNeighborhood on our query test set, thus giv-
ing it an advantage. The results in Figure 11 show that
NeMa is almost three orders of magnitude slower than
our algorithm. This suggests that a query answering
technique for graphs is not applicable to our setting.

We also provide anecdotal evidence comparing the
top-5 results from our method and NeMa. Tables 2

and 3 show the top-5 results of NeMa for two differ-
ent exemplar queries compared with the results of our
algorithm, shown in Tables 4 and 5 (for our algorithm,
we report the top-2 results containing query terms, the
top-2 results not containing query terms, and for refer-
ence, the lowest ranking result).

We observe that if the structure of the exemplar
query is complex (e.g., it contains cycles), NeMa fails
to find the correct answers, mapping different query
nodes on the same graph node as depicted in Table 3-
row 3, where the same graph node,“Oral Transmission”,
is used twice. Actually, 87% of the answers produced
by NeMa are not isomorphic to the test queries, pro-
ducing results that contain the same node more than
once, and thus, leading to poor results. Furthermore,
the top answers proposed by NeMa for Q2 contain dis-
eases that are not sexually transmitted (e.g., diabetes
that is ranked 2nd), a situation that does not occur
with our algorithm.

For strong simulation, Tables 6 and 7 report the top-
2 results containing query terms, the top-2 results not
containing query terms, and the result with the lowest
ranking score. Note that, with strong simulation, some
answers include more nodes than those in the query. For
instance, the first result in Table 6 lists all the acquisi-
tions made by Google8 and also Menlo Park. This is the
result of the maximality enforced by strong simulation,
which compresses several isomorphic answers in one sin-
gle simulating answer. Similarly, the third result (that
does not contain any node of the query), represents all
the acquisitions by Yahoo, along with the Santa Clara
node. Contrary to isomorphism, strong simulation cor-
rectly groups answers having the same root node (e.g.,
Yahoo). Table 7 shows how the maximality condition
reduces the size of similar answers. Indeed, all the re-
sults that are in the first two rows of Table 5 are con-
densed in the first result in Table 7 that represents all

8 For ease of exposition, we do not report the complete list
of entities in the answer.

Exemplar Queries: A New Way of Searching 21

Q1: Google - YouTube - Menlo Park
Google - YouTube - Menlo Park
Yahoo! - LAUNCH Media - Stanford University
Yahoo! - Musicmatch - Stanford University
Yahoo! - Right Media - Stanford University
Yahoo! - Inktomi Corporation - Stanford University

Table 2: Top-5 results with NeMa for “Google YouTube
Menlo Park”.

Q2: Condom - Sex - HIV infection
Water purification - Fecal-oral route - Cholera
Smoking cessation - Vector - Diabetes mellitus
Oral Transm. - Cytomegalovirus Infections - Oral Transm.
Oral Transmission - Cerebral palsy - Cytomegalovirus
Water purification - Fecal-oral route - Cholera

Table 3: Top-5 results with NeMa for “Condom Sex HIV
infection”.

Q1: Google - YouTube - Menlo Park
Google - AdMob - Menlo Park
Google - DoubleClick - Menlo Park
Yahoo! - del.icio.us - Santa Clara
Microsoft - Powerset - Albuquerque
A&E Television - Lifetime Ent. Services

Table 4: Results for exemplar query “Google YouTube
Menlo Park”.

Q2: Condom - Sex - HIV infection
Sex - HIV infection - Safe sex
Sex - HIV infection - Sexual abstinence
Safe sex - Vertical transmission - Hepatitis B
Safe sex - Vertical transmission - Syphilis
Hand washing - Droplet Contact - Cold

Table 5: Results for exemplar query “Condom Sex HIV
infection”.

Q1: Google - YouTube - Menlo Park
Google - AdMob - Youtube [...] - Menlo Park
YouTube - Next New Networks - San Mateo
Yahoo! - Inktomi - Del.icio.us, Inc. [...] - Santa Clara
AOL - Sphere - Netscape - USA
John Wiley & Sons - InfoPOEMs - New York City

Table 6: Results for exemplar query “Google YouTube
Menlo Park” with strong simulation.

Q2: Condom - Sex - HIV infection
Sex - Condom - HIV infection - Safe Sex [...] - Candiasis
Sex - Condom - Unsafe Sex - [...] - Pelvic inflammation
Vaccine - Poor Hygiene - Immunodeficiency [...] - Influenza
Contact with infected person - Aciclovir [...] - Chickenpox
DPT vaccine - Child age - Droplet Contact [...] - Pertussis

Table 7: Results for exemplar query “Condom Sex HIV
infection” with strong simulation.

the risk factors and prevention methods for sexually
transmitted infections. We observe that some nodes are
still repeated among different results, concluding that
strong simulation does not necessarily collapse all the
redundant information in one single answer. Nonethe-
less, we still obtain good clusters of answers. Note that
Table 7, in rows 3 and 4, presents relevant answers
about other contagious infections not related to sex,
thus offering a richer, more diverse answer set. These
results are also present in the isomorphic answers, but
in much lower-ranked positions.

8.3 Pruning Effectiveness

We now study the impact of pruning on query time and
the effect of selectivity on pruning time.

Pruning impact: We perform a batch of experiments
using repeatedly the query test set, comparing the query
time with and without applying IterativePruning,
and depict the results in Figure 12. Recall that the pa-
rameter d of IterativePruning (Section 5.1) deter-
mines how large is the d-hop nodes set of each node.

By definition, a higher value of d causes a more ag-
gressive pruning of the search space. We note that, as
discussed in Section 5.1, our pruning technique does not
modify the quality of the final result set, neither does
it discard any relevant result. Nonetheless, Theorem 1

suggests that values of d larger than the query diame-
ter (i.e., 3 or greater for our queries) have no impact on
pruning power. Figure 13 validates this claim, showing
that the added benefit with d = 3 is minimal. In prac-
tice, these results show that graph structures captured
by the node’s 3−hop nodes (i.e., for nodes at distance
3) have insignificant additional discriminative power.
Therefore, building d-hop node tables for d = 3, or
more, would not be beneficial in terms of pruning, and
would instead be detrimental in terms of performance.

Overall, pruning results in querying time reductions
between 3% and 99%. Interestingly, for 17% of the queries
pruning does not affect query time. The reason is that
pruning is more effective when the frequencies in the
graph of the sample edge-labels are low, since a large
part of the graph is eliminated with fewer operations.
This observation may allow us to run the IterativePrun-
ing on demand. On average, IterativePruning re-
duces query time by 30% and the graph size by 80%
(by removing non-matching edges). This entire batch
of experiments takes 17 minutes to run with pruning
and 38 without, saving 55% of the total time.

Pruning Selectivity: We study the performance of
pruning in terms of time as a function of the selectiv-
ity of the starting node in the sample. Remember that
low selectivity means better pruning (see Equation 1).
We run experiments measuring the correlation between

22 Davide Mottin et al.

0%	

3%	

6%	

9%	

12%	

15%	

18%	

0	
 	
 	
 	
 	
 	
 	
 	
 	
 10	
 	
 	
 	
 	
 	
 	
 	
 	
 20	
 	
 	
 	
 	
 	
 	
 	
 	
 30	
 	
 	
 	
 	
 	
 	
 	
 	
 40	
 	
 	
 	
 	
 	
 	
 	
 	
 50	
 	
 	
 	
 	
 	
 	
 	
 	
 60	
 	
 	
 	
 	
 	
 	
 	
 	
 70	
 	
 	
 	
 	
 	
 	
 	
 	
 80	
 	
 	
 	
 	
 	
 	
 	
 	
 90	
 	
 	
 	
 	
 	
 	
 	
 	
 100	
 	
 	
 	
 	
 	
 	
 	
 	

Q
ue

rie
s	
 (
%
)	

Time	
 gain	
 (%)	

Fig. 12: Execution time gain distri-
bution as a result of pruning (Real
dataset).

0	

20	

40	

60	

80	

100	

0	
 -­‐	
 20	
 21	
 -­‐	
 40	
 41	
 -­‐	
 60	
 61	
 -­‐80	
 81	
 -­‐	
 100	

Q
ue

rie
s	
 (
%
)	

Ver,ces	
 Pruned	
 (%)	

d	
 =	
 2	

d	
 =	
 3	

Fig. 13: Pruned Edges Distribution
(Real dataset).

0%	

50%	

100%	

0.001	
 0.003	
 0.005	
 0.007	
 0.01	

τ	

<	
 1	
 sec	
 1	
 -­‐	
 	
 10	
 secs	
 >	
 10	
 	
 	
 sec	

Fig. 14: Distribution of Running
Time vs ApFastXQ threshold
(Real dataset).

time and selectivity, selecting the different nodes of the
sample as starting nodes. The results show a positive
correlation of 0.57 between selectivity and time per-
formance, which is statistically significant at the 0.01
significance level. We conclude that starting from a low
selective node positively impacts the pruning time, with
savings up to 87%.

8.4 Calibrating SelectQueryNeighborhood

We study the effect of τ on SelectQueryNeighbor-
hood in terms of time and quality of the results. The
parameter τ of SelectQueryNeighborhood deter-
mines the degree of approximation of the estimation of
PPV of each node and is directly related to the num-
ber of answers retrieved and to the running time. In
Figure 15c and 15f, we plot the size of the neighbor-
hoods (counts of vertices and edges from the graph) vis-
ited for increasing values of τ (from 0.001 to 0.01), and
the number of answers retrieved in each case. We refer
to visited vertices/edges as the vertices/edges retrieved
by our SelectQueryNeighborhood algorithm. We
then search for relevant answers in the graph containing
only such nodes and edges. In general, we see in Fig-
ure 14 that, for values of τ equals or greater than 0.005
the vast majority of queries run in less than 1 second.
On the other hand, when we use values of τ equal or
smaller than 0.003 we see that some queries start taking
more than 10 seconds.

We witness an exponential decay in the number of
visited nodes and edges as τ increases, which is propor-
tional to the number of answers retrieved. This is mir-
rored, in Figures 15a and 15d by a decrease in the time
needed to retrieve the query neighborhood and to prune
it. In line with this, Figures 15b and 15e show that with
larger values of τ , the total time needed to compute
the results decreases in the same manner. Thus, with a

larger neighborhood we find more answers to the query,
at the expense of higher execution times.

We observe that the average time required by strong
simulation to compute the set of maximal d-graphs is
higher than isomorphism (Figure 15b), but as the me-
dian result demonstrates (Figure 15e), this is only true
for very few large and complex queries. There is also a
noticeable difference in the number of answers retrieved
by strong simulation and isomorphism (see Figures 15c
and 15f). This is a natural consequence of the strong
simulation congruence relation, and a desirable effect,
because all the results are grouped in fewer but larger
answers. Figure 16 validates this claim, showing that
even though strong simulation retrieves less answers,
those involve between 22% (for τ = 0.01) and 48% (for
τ = 0.0003) more distinct nodes than isomorphism. As
expected, we found that for every query the answer set
retrieved with strong simulation is a superset of the one
retrieved with isomorphism.

In order to better understand the time-performance
behavior of our approach, we measured the correlation
between search time and a number of query characteris-
tics: diameter, density, number of repeated edge labels,
and average label frequency. With isomorphism as con-
gruence relation, the number of repeated edge labels
positively correlates with the running time, as shown
in Figure 17. This correlation is statistically significant
with p-value < 0.001. We also observed a weak corre-
lation (p-value < 0.01) between the average number of
times a label appears in the query and the search time.

Note that these observations do not hold for strong
simulation. The performance of strong simulation de-
pends only on the size of the graph, since the Match
algorithm is not affected by the characteristics of the
queries [32].

We now evaluate the quality of the answers pro-
duced by ApFastXQ, by measuring precision at 1,5,10,
50,100, where precision at k (abbreviated P@k) is de-
fined as the fraction of results produced by FastXQ

Exemplar Queries: A New Way of Searching 23

0.001	

0.01	

0.1	

1	

10	

100	

0	
 0.005	
 0.01	

Ti
m
e	

(s
)	

τ	

Neighborhood	
 Time	

Pruning	
 Time	

(a) Average neighbor and pruning Time.

0.01	

0.1	

1	

10	

100	

1000	

0	
 0.005	
 0.01	

Ti
m
e	

(s
)	

τ	

Total	
 Time	
 SIM	

Total	
 Time	
 ISO	

(b) Average total time.

0.01	

0.1	

1	

10	

100	

1000	

0	
 0.005	
 0.01	

Co
un

t	
 (
k)
	

τ	

Found	
 Answers	
 ISO	

Visited	
 Edges	

Visited	
 Ver8ces	

Found	
 Answers	
 SIM	

(c) Average count in terms of number of
answers and visited edges/nodes.

0.001	

0.01	

0.1	

1	

10	

100	

0	
 0.005	
 0.01	

Ti
m
e	

(s
)	

τ	

Neighborhood	
 Time	

Pruning	
 Time	

(d) Median neighbor and pruning time.

0.01	

0.1	

1	

10	

100	

1000	

0	
 0.005	
 0.01	

Ti
m
e	

(s
)	

τ	

Total	
 Time	
 SIM	

Total	
 Time	
 ISO	

(e) Median total time.

0.01	

0.1	

1	

10	

100	

1000	

0	
 0.005	
 0.01	

Co
un

t	
 (
k)
	

τ	

Visited	
 Edges	

Visited	
 Ver/ces	

Found	
 Answers	
 ISO	

Found	
 Answers	
 SIM	

(f) Median count in terms of number of
answers and visited edges/nodes.

Fig. 15: Study of the average (top) and median (bottom) time and number of results (count) as a function of
the threshold τ , comparing Isomorphism and Simulation with the ApFastXQ/ApFastXQSim Algorithms.

0%	

20%	

40%	

60%	

80%	

100%	

0.01	
 0.007	
 0.005	
 0.003	
 0.001	

In
cr
em

en
t	
 (
%
)	

τ	

Fig. 16: Percentage increment in
vertex cardinality for strong simu-
lation answer set compared to iso-
morphism (Real dataset).

0	

1	

2	

3	

4	

5	

6	

7	

8	

9	

0	
 1	
 2	
 3	
 4	

Ti
m
e	

(s
)	

#	
 Repeated	
 Edge	
 Labels	

Fig. 17: Search Time vs number of
repeated labels.

0.01	

0.1	

1	

10	

100	

1000	

10000	

100000	

1000000	

10000000	

AVG	
 MEDIAN	
 AVG	
 MEDIAN	
 AVG	
 MEDIAN	

FastXQ	
 TopKXQ	
 AppFastXQ	

Visisted	
 Edges	
 (num)	

Visited	
 Ver3ces	
 (num)	

Fig. 18: Average and Median Num-
ber of Edges and Nodes visited,
compared to running time, on
GSize-10.

that are also produced by ApFastXQ in the first k
positions. Table 8 shows that overall precision is high,
especially for the top positions. Any value of τ between
0.003 and 0.005 is a reasonable choice, leading to high
precision and an average query time of less than 2.4 sec-
onds. Evidently, the choice of this parameter depends
on the application. In a biological setting, where preci-
sion is more important than time, τ = 0.002 could be
a reasonable choice, producing very precise answers in
about 10 seconds. On the web, where timely answers are

needed, τ = 0.005 can still offer precise answers in the
top positions, in less than 1 second. In our experiments,
we use τ = 0.003.

8.5 Top-k results

We now study the performance of the TopKXQ al-
gorithm, and compare it against both FastXQ, and
AppFastXQ. We measure the portion of the graph ex-

24 Davide Mottin et al.

0.01	

0.1	

1	

10	

100	

1000	

10000	

0	
 2	
 4	
 6	
 8	
 10	

Co
un

t	
 (
k)
	

Number	
 of	
 answers	
 (k)	

Visited	
 Edges	

Visited	
 Nodes	

Found	
 Answers	

Fig. 19: Count vs number of
answers (QSize-x dataset).

1	

10	

100	

1000	

0	
 2	
 4	
 6	
 8	
 10	

Ti
m
e	

(m

s)
	

Number	
 of	
 answers	
 (k)	

RelevantNeighborhood	

XQ	
 (a:er	
 RelevantNe.,	
 Itera>vePr.)	

Itera>vePruning	

Fig. 20: Time vs number of
answers (QSize-x dataset).

0.01	

0.1	

1	

10	

100	

1000	

0	
 5	
 10	
 15	
 20	

Co
un

t	
 (
k)
	

Number	
 of	
 nodes	
 (M)	

Visited	
 Edges	

Visited	
 Nodes	

Found	
 Answers	

Fig. 21: Count vs number of
nodes (GSize-x dataset).

1	

10	

100	

1000	

0	
 5	
 10	
 15	
 20	

Ti
m
e	

(m

s)
	

Number	
 of	
 nodes	
 (M)	

RelevantNeighborhood	

XQ	
 (a8er	
 RelevantNe.,	
 Itera<vePr.)	

Itera<vePruning	

Fig. 22: Time vs number of
nodes (GSize-x dataset).

τ P@1 P@5 P@10 P@50 P@100
0.002 1 0.99 0.99 0.85 0.75
0.003 1 0.97 0.94 0.80 0.73
0.004 1 0.95 0.93 0.71 0.60
0.005 1 0.94 0.92 0.66 0.56

Table 8: Precision of ApFastXQ varying τ

plored by each solution, counting the number of nodes
and edges used during the isomorphic test. In this ex-
periment, we use GSize-10, and look for the top-10
answers. We report the results in Figure 18.

We can see that FastXQ explores the entire graph,
while TopKXQ visits more than an order of magnitude
less nodes and edges. This considerable improvement is
possible, because TopKXQ directly computes the top-
k answers, while FastXQ has to first compute all the
answers, and then rank them.

The AppFastXQ algorithm explores the smallest
portion of the graph, namely, four and three orders of
magnitude less than FastXQ and TopKXQ, respec-
tively. This speedup is due to the fact that the answer
set produced by AppFastXQ is approximate, while the
other two algorithms always provide the optimal set of
answers. Nevertheless, as we discussed earlier (refer to
Table 8), this approximate set of answers overlaps al-
most completely with the optimal set of answers, and
they always contain the same top-1 answer.

8.6 Scalability

We present the scalability experiments as a function of
the number of answers and the size of the database. Fig-
ure 19 shows the number of visited edges and nodes, and
the number of results when the number of embedded
answers increases (recall that QSize-x contains exactly
x answers for each exemplar query). Figure 20 depicts
the time of ApFastXQ, broken down in the times re-
quired by the three components of the algorithm. We
observe that using SelectQueryNeighborhood as
the number of answers increases from 60 to 100, the

number of explored nodes remains almost the same.
This is expected, since SelectQueryNeighborhood
does not explore more nodes as long as the structure
of the graph does not substantially change, but it finds
more answers embedded in the same subgraph.

Conversely, if the size of the dataset increases and
the number of answers is fixed, it is less likely to find
answers close to the exemplar query. As expected, since
the number of nodes explored is almost the same (see
Figure 21) the time remains constant (see Figure 22),
even though we move from 500k to 20M nodes. This
supports our design choice, since changes in the periph-
eral part of the graph do not affect APPV.

9 Conclusions

In this paper we introduce and define a novel query
paradigm called Exemplar Queries, and describe how
it is applied in the case of knowledge graphs, where it
requires the search for subgraph-isomorphism in order
to evaluate a query. We also propose a more flexible
congruence relation, based on strong simulation. For
both congruence relations we propose an exact solution
based on an effective and theoretically sound pruning
technique, a fast algorithm for the search of top-k rel-
evant exemplar answers, and an efficient algorithm for
the approximation of the correct answers set. We eval-
uated our approach using in its entirety (for the first
time in the literature) one of the biggest multigraphs
available, and coupled our results with a user study,
demonstrating the efficiency and usefulness of the pro-
posed system.

Acknowledgments

This work was partially supported by the Trento RISE
Big Data project [4]. We would like to thank the authors
of [10], NeMa [29], and strong-simulation [32] for kindly
providing us their code. We thank Paola Quaglia for the
valuable discussion and suggestions about simulation.

Exemplar Queries: A New Way of Searching 25

References

1. R. Agrawal, S. Gollapudi, A. Halverson, and S. Ieong. Di-
versifying search results. In WSDM, 2009.

2. A. Anagnostopoulos, L. Becchetti, C. Castillo, and A. Gio-
nis. An optimization framework for query recommendation.
In WSDM, 2010.

3. R. Baeza-Yates, P. Boldi, and C. Castillo. Generalizing
pagerank: damping functions for link-based ranking algo-
rithms. In SIGIR, 2006.

4. I. Bedini, B. Elser, and Y. Velegrakis. The trento big data
platform for public administration and large companies:
Use cases and opportunities. PVLDB, 6(11), 2013.

5. C. Beeri and T. Milo. Schemas for integration and trans-
lation of structured and semi-structured data. In ICDT.
Springer Berlin Heidelberg, 1999.

6. S. Bergamaschi, E. Domnori, F. Guerra, R. Trillo Lado, and
Y. Velegrakis. Keyword search over relational databases: a
metadata approach. In SIGMOD, 2011.

7. S. Bergamaschi, F. Guerra, S. Rota, and Y. Velegrakis. A
hidden markov model approach to keyword-based search
over relational databases. In ER, 2011.

8. S. Bhatia, D. Majumdar, and P. Mitra. Query suggestions
in the absence of query logs. In SIGIR, 2011.

9. P. Boldi, F. Bonchi, C. Castillo, and S. Vigna. Query refor-
mulation mining: models, patterns, and applications. IR,
14(3), 2011.

10. I. Bordino, G. De Francisci Morales, I. Weber, and
F. Bonchi. From machu picchu to rafting the urubamba
river: anticipating information needs via the entity-query
graph. In WSDM, 2013.

11. S. Chakrabarti. Dynamic personalized pagerank in entity-
relation graphs. In WWW, 2007.

12. S. A. Cook. The complexity of theorem-proving procedures.
In Symposium on Theory of Computing, 1971.

13. K. Dimitriadou, O. Papaemmanouil, and Y. Diao. Explore-
by-example: an automatic query steering framework for in-
teractive data exploration. In SIGMOD, 2014.

14. X. Dong, A. Y. Halevy, and J. Madhavan. Reference Rec-
onciliation in Complex Information Spaces. In SIGMOD,
2005.

15. Z. Dou, S. Hu, Y. Luo, R. Song, and J. Wen. Finding
dimensions for queries. In CIKM, pages 1311–1320, 2011.

16. W. Fan, J. Li, S. Ma, H. Wang, and Y. Wu. Graph homo-
morphism revisited for graph matching. PVLDB, 3(1-2),
2010.

17. M. A. Gallego, J. D. Fernández, M. A. Mart́ınez-Prieto,
and P. de la Fuente. An empirical study of real-world sparql
queries. In USEWOD Workshop-WWW, 2011.

18. X. Gao, B. Xiao, D. Tao, and X. Li. A survey of graph edit
distance. Pattern Analysis and applications, 13(1), 2010.

19. S. Gauch and J. B. Smith. Search improvement via auto-
matic query reformulation. TOIS, 9(3):249–280, 1991.

20. Google. Freebase data dumps. https://developers.
google.com/freebase/data, 2014.

21. T. H. Haveliwala. Topic-sensitive pagerank. In WWW,
2002.

22. M. R. Henzinger, T. A. Henzinger, and P. W. Kopke. Com-
puting simulations on finite and infinite graphs. In FOCS,
1995.

23. A. Hogan, M. Mellotte, G. Powell, and D. Stampouli. To-
wards fuzzy query-relaxation for rdf. In The Semantic Web:
Research and Applications, pages 687–702. Springer, 2012.

24. B. Jansen, D. Booth, and A. Spink. Determining the in-
formational, navigational, and transactional intent of web
queries. Inf Process Manag, 2008.

25. G. Jeh and J. Widom. Scaling personalized web search. In
WWW, 2003.

26. M. Kargar and A. An. Keyword search in graphs: Finding
r-cliques. PVLDB, 4(10), 2011.

27. G. Kasneci, M. Ramanath, M. Sozio, F. M. Suchanek, and
G. Weikum. Star: Steiner-tree approximation in relation-
ship graphs. In ICDE, 2009.

28. A. Khan, N. Li, X. Yan, Z. Guan, S. Chakraborty, and
S. Tao. Neighborhood based fast graph search in large
networks. In SIGMOD, 2011.

29. A. Khan, Y. Wu, C. C. Aggarwal, and X. Yan. Nema: Fast
graph search with label similarity. In PVLDB, 2013.

30. N. Lao and W. W. Cohen. Fast query execution for retrieval
models based on path-constrained random walks. In KDD,
2010.

31. M. Lissandrini, D. Mottin, T. Palpanas, D. Papadimitriou,
and Y. Velegrakis. Unleashing the power of information
graphs. SIGMOD Rec., 43(4), 2015.

32. S. Ma, Y. Cao, W. Fan, J. Huai, and T. Wo. Strong sim-
ulation: Capturing topology in graph pattern matching.
TODS, 39(1):4, 2014.

33. C. Mishra and N. Koudas. Interactive query refinement. In
EDBT, 2009.

34. D. Mottin, M. Lissandrini, Y. Velegrakis, and T. Palpanas.
Exemplar queries: Give me an example of what you need.
PVLDB, 7(5), 2014.

35. D. Mottin, A. Marascu, S. B. Roy, G. Das, T. Palpanas,
and Y. Velegrakis. A probabilistic optimization framework
for the empty-answer problem. PVLDB, 6(14):1762–1773,
2013.

36. D. Mottin, T. Palpanas, and Y. Velegrakis. Entity Ranking
Using Click-Log Information. IDA Journal, 17(5), 2013.

37. V. M. Ngo and T. H. Cao. Ontology-based query expan-
sion with latently related named entities for semantic text
search. In IJIIDS. 2010.

38. L. Page, S. Brin, R. Motwani, and T. Winograd. The pager-
ank citation ranking: Bringing order to the web. TR 1999-
66, Stanford InfoLab, Nov.

39. D. Park. Concurrency and automata on infinite sequences.
Springer, 1981.

40. J. Pound, A. K. Hudek, I. F. Ilyas, and G. Weddell. In-
terpreting keyword queries over web knowledge bases. In
CIKM, 2012.

41. Y. Qiu and H.-P. Frei. Concept based query expansion. In
SIGIR, 1993.

42. C. E. Shannon. A mathematical theory of communica-
tion. SIGMOBILE Mob. Comput. Commun. Rev., 5(1):3–
55, Jan. 2001.

43. Y. Shen, K. Chakrabarti, and M. Jones. Discovering
Queries based on Example Tuples. SIGMOD, 2014.

44. J. R. Ullmann. An algorithm for subgraph isomorphism.
J. ACM, 23(1):31–42, Jan. 1976.

45. D. Vallet and H. Zaragoza. Inferring the most important
types of a query: a semantic approach. In SIGIR, pages
857–858, 2008.

46. X. Wang, X. Ding, A. K. H. Tung, S. Ying, and H. Jin. An
efficient graph indexing method. In ICDE, pages 210–221,
2012.

47. X. Wang and C. Zhai. Mining term association patterns
from search logs for effective query reformulation. In
CIKM, pages 479–488, 2008.

48. W. Xing and A. Ghorbani. Weighted pagerank algorithm.
In CNSR, pages 305–314, 2004.

49. X. Yan, P. S. Yu, and J. Han. Graph indexing: a frequent
structure-based approach. In SIGMOD, 2004.

50. S. Yang, Y. Wu, H. Sun, and X. Yan. Schemaless and
structureless graph querying. PVLDB, 7(7), 2014.

51. P. Zhao and J. Han. On graph query optimization in large
networks. VLDB J., 3(1-2):340–351, 2010.

52. M. M. Zloof. Query by example. In AFIPS NCC, pages
431–438, 1975.

https://developers.google.com/freebase/data
https://developers.google.com/freebase/data

	Introduction
	Related work
	Problem Statement
	The Basic XQ Algorithm
	Finding Subgraph Isomorphic Answers
	Finding Simulating Answers
	Solution Workflow
	Experimental Evaluation
	Conclusions

